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Abstract13

Contemporary general circulation models (GCMs) and Earth system models (ESMs) are14

developed by a large number of modeling groups globally. They use a wide range of rep-15

resentations of physical processes, allowing for structural (code) uncertainty to be par-16

tially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the17

Coupled Model Intercomparison Project (CMIP) have a common development history18

due to sharing of code and schemes. This makes their projections statistically dependent19

and introduces biases in MME statistics. Previous research has focused on model out-20

put and code dependence, and model code genealogy of CMIP models has not been fully21

analyzed. We present a full reconstruction of CMIP3, CMIP5 and CMIP6 code geneal-22

ogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP)23

based on the available literature, with a focus on the atmospheric component and at-24

mospheric physics. We identify 12 main model families. We propose family and ances-25

try weighting methods designed to reduce the effect of model structural dependence in26

MMEs. We analyze weighted effective climate sensitivity (ECS), climate feedbacks, forc-27

ing, and global mean near-surface air temperature, and how they differ by model fam-28

ily. Models in the same family often have similar climate properties. We show that weight-29

ing can partially reconcile differences in ECS and cloud feedbacks between CMIP5 and30

CMIP6. The results can help in understanding structural dependence between CMIP31

models, and the proposed ancestry and family weighting methods can be used in MME32

assessments to ameliorate model structural sampling biases.33

Plain Language Summary34

Contemporary global climate models are developed by a large number of model-35

ing groups internationally. Commonly, projections from multiple models are used together36

to calculate multi-model means and quantify uncertainty. Because many of the models37

share parts of their computer code, algorithms and parametrization schemes, they are38

not independent. Overrepresented models can cause biases in multi-model means, and39

uncertainty may be underestimated if model dependence is not taken into account. We40

document a full code genealogy of 167 models, of which 114 participated in the Coupled41

Model Intercomparison Project (CMIP) phases 3, 5, and 6, with a focus on the atmo-42

spheric component. We identify 12 main model families. We show that models in the43

same family often have similar estimates of key climate properties. We propose statis-44

tical weighting methods based on the model family and code relationship, and show that45

they can reconcile some of the difference in results between the two most recent CMIP46

phases. The weighting methods or a selection of independent models based on the ge-47

nealogy can be used in model assessment studies to reduce the effects of model depen-48

dence.49

1 Introduction50

General circulation models (GCMs) and Earth system models (ESMs) are currently51

the most sophisticated tools for studying paleontological, historical, present-day, and fu-52

ture climate. The development of GCMs has a long history, interlinked with the devel-53

opment of numerical weather prediction (NWP) models (Lynch, 2008). Intercompari-54

son between climate models dates back to the late 1980s when the Atmospheric Model55

Intercomparison Project (AMIP) started comparing atmospheric models under standard-56

ized conditions and model output (Touzé-Peiffer et al., 2020). This was followed by the57

Coupled Model Intercomparison Project (CMIP) phase 1 and 2 in 1996 and 1997, re-58

spectively, which informed the Third Assessment Report (TAR) of the Intergovernmen-59

tal Panel on Climate Change (IPCC). CMIP3 (Meehl et al., 2007) was the first time that60

model output became openly available to all researchers, and therefore enabled a wide61

research of climate models together as multi-model ensembles (MMEs). However, this62
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came with difficulties because such a multi-model data set was not designed to repre-63

sent structural model uncertainty in an unbiased way (Abramowitz et al., 2019). The64

two most recent CMIP phases are phase 5 (Taylor et al., 2012) and phase 6 (Eyring et65

al., 2016, 2019).66

Modern climate models such as GCMs and ESMs are highly complex software, con-67

sisting of many components, modules, and configuration parameters. Usually, compo-68

nents such as the atmosphere, ocean, land, sea ice, chemistry, biology, and others are cou-69

pled together continuously during a simulation (Alexander & Easterbrook, 2015). These70

components may be divided into subcomponents, modules or schemes representing var-71

ious physical parametrizations, such as radiative transfer in the atmospheric component.72

Components and subcomponents can sometimes be easily replaced with others, or they73

can be turned on or off depending on the configuration. These model parts have been74

shared relatively freely between different models in the same modeling group as well as75

between groups internationally (in the following text we will use the terms “modeling76

group” and “institute”, the latter being common in the context of CMIP, interchange-77

ably). Alexander and Easterbrook (2015) directly analyzed the source code of model com-78

ponents, showing significant sharing of components between models thanks to their highly79

modular nature. Furthermore, parametrizations documented in literature were imple-80

mented in a variety of models, meaning that they use many of the same parametriza-81

tions for certain physical processes. This development approach leads to structural model82

dependence, which could mean that their model output is more similar than what would83

be expected from structurally independent models. Understanding model structural de-84

pendence is further complicated by the fact that only few models have publicly avail-85

able source code. The practice of “forking” code, when a new branch of a code base is86

created under a new name, is common in software development. This is also the case with87

climate models, where different modeling groups base their work on forking of an exist-88

ing model from the same or a different modeling group. This process can be quite opaque89

to the end-users, who might, without access to further context, assume that a different90

model name implies that the model is entirely independent. We can expect that model91

code bases which are open source (such as the Community Earth System Model [CESM])92

or licensed widely within international consortia (such as the Integrated Forecasting Sys-93

tem [IFS]/ARPEGE and Hadley Centre Global Environmental Model [HadGEM]) are94

more highly represented in model ensembles due to the ease of sharing code (Sanderson95

et al., 2015b). This is potentially in contrast to the proliferation of code which produces96

the best results, which could otherwise arise if all model code were openly available. As97

discussed below, what constitutes “the best results” may be difficult to quantify and is98

not guaranteed to coincide with the best projections. Guilyardi et al. (2013) initiated99

better model and experiment metadata collection within CMIP5 in order to provide per-100

tinent information to those performing research based on model comparisons.101

Because all models are imperfect representations of reality, they are affected by var-102

ious uncertainties in the model output, which can be broadly categorized as data, pa-103

rameter, and structural uncertainty (Remmers et al., 2020). While data and parameter104

uncertainty can be relatively easily quantified and sampled, structural uncertainty per-105

taining to model code is hard to quantify or sample, and some authors noted that struc-106

tural uncertainty is insufficiently sampled in CMIP MMEs (Knutti et al., 2010). Mod-107

els participating in CMIP are dependent in a number of ways, including being essentially108

the same model with a different configuration, sharing parts of their codes, model com-109

ponents, and schemes, using the same data sets for validation, and implementing sim-110

ilar parametrizations. Some authors have therefore called this MME an “ensemble of op-111

portunity” (Masson & Knutti, 2011; Knutti et al., 2013; Sanderson et al., 2015a; Boé,112

2018), since the inclusion is based on the intent of a modeling group to participate rather113

than objective selection criteria. If model dependence is not taken into account, the cal-114

culation of means, variance, and uncertainty can be biased, and spurious correlations (such115

as in emergent constraints) can arise in an MME (Caldwell et al., 2014; Sanderson et al.,116
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2021). Remmers et al. (2020) investigated whether model code genealogy can be inferred117

from model output [also investigated earlier by Knutti et al. (2013) and discussed be-118

low]. Using a modular modeling framework, they generated a model ensemble of hydro-119

logical models by sampling the model “hypothesis space” [as defined in Remmers et al.120

(2020)] and compared its genealogies based on model code and model output. They found121

that it was not possible to infer complete model code genealogy based on model output122

because the performance of the inference was low. It is possible that the same would par-123

tially apply to much more complex models like GCMs and ESMs, and model code re-124

lationship needs to be studied in order to sample the model hypothesis space. Pennell125

and Reichler (2011) tried to quantify the effective number of models in an MME of 24126

CMIP3 models based on model output error similarity, and found this to be about 8. In-127

creasing the number of ensemble models did not substantially increase the effective num-128

ber of models. Sanderson et al. (2015b) reached a similar conclusion, and found that the129

number of independent models calculated based on the model output in CMIP5 is much130

smaller than the total.131

The simplest approach to analyzing an MME is “model democracy”, where each132

model is given an equal weight in statistical calculations. More sophisticated approaches133

proposed to address model dependence include weighting or selecting models. Selecting134

models can be regarded as an extreme form of weighting. Often suggested weighting meth-135

ods are based on model performance (“model meritocracy”), model output or code de-136

pendence, and diversity. The topic of climate model dependence and genealogy has been137

covered in many previous studies, most of which used the dependence of the model out-138

put (Jun et al., 2008a, 2008b; Masson & Knutti, 2011; Knutti et al., 2013; Bishop & Abramowitz,139

2013; Sanderson et al., 2015a; Haughton et al., 2015; Mendlik & Gobiet, 2016), while a140

focus on code dependence has been relatively rare (Alexander & Easterbrook, 2015; Stein-141

schneider et al., 2015). Boé (2018) distinguishes these two approaches as “a posteriori”142

and “a priori”. Knutti et al. (2013) developed a CMIP5 model genealogy based on a hi-143

erarchical clustering of model output. They found that models from the same institute144

were much closer in their model output than other models, and contemplated that out-145

put similarity could be used for model weighting or selection to eliminate biases due to146

near duplicate models. A more simple approach is “institutional democracy”, where one147

model per modeling group is selected, and “component democracy”, where models are148

selected to represent different model components (Abramowitz et al., 2019). Edwards149

(2000a, 2000b, 2000c, 2011, 2013) described the early to modern history of climate mod-150

eling and constructed a partial “family tree” of atmospheric GCMs based on their code151

heritage. Another account on early climate modeling was given by Arakawa (2000). Boé152

(2018) summarized institute, atmospheric, oceanic, land, and sea ice components of CMIP5153

models and how they relate to proximity of the model results. However, the code depen-154

dence of all CMIP3, CMIP5, and CMIP6 models has not been analyzed. Partially, such155

understanding is limited by the availability of the source code. This contributes to the156

treatment of models as “black boxes” by the research community. Haughton et al. (2015)157

compared simple weighting with model performance and model output dependence weight-158

ing. They found performance weighting improved mean relative to observations (as ex-159

pected) but degraded variance estimation, and dependence weighting improved both. Steinschneider160

et al. (2015) identified close correlations between model output of models of the same161

family even on a regional scale, and showed that the clustering of similar models can re-162

sult in narrowing the MME variance attributable to intermodel correlations.163

Reducing the size of an MME to a set of independent models is a relatively sim-164

ple method of avoiding model dependence. Sanderson et al. (2015b) noted that permit-165

ting only one model per institute in an MME could lead to unfairly dismissing models166

which are substantially different, and overestimating independence in cases where code167

is shared between institutes. Weighting models by country can have some merit due to168

the fact that models are sometimes developed with a focus on accuracy over the region169

where the institute is located, and a model might be more extensively validated against170
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data from observations in the region. For example, the New Zealand Earth System Model171

(NZESM) (in practice developed alongside HadGEM/UKESM) was developed to reduce172

Southern Ocean biases (Williams et al., 2016); the Indian Institute of Tropical Meteo-173

rology ESM (IITM ESM) has a special focus on the South Asian monsoon (Krishnan et174

al., 2021); the Australian Community Climate and Earth System Simulator coupled model175

(ACCESS-CM) has a focus on reducing uncertainties over the Australian region (Bi et176

al., 2013); and the Energy Exascale Earth System Model (E3SM) aims to support the177

U.S. energy sector decisions (Golaz et al., 2019). Weighting models by errors relative to178

observations (performance weighting) is complicated by the fact that there can be a de-179

coupling between a climate model’s accuracy in representing present-day and historical180

climate variables and its accuracy in representing the projected change (or trend) of the181

variables under a climate scenario (Jun et al., 2008a; Zelinka, 2022; Kuma et al., 2022).182

Thus, a model’s performance in future climate projections cannot be fully inferred from183

its performance in present-day and historical climate. Performance weighting can also184

favor models which are better tuned to present-day, historical or paleontological obser-185

vations by compensating biases. It is possible that model quality cannot be estimated186

solely from model output due to the fact that some models might represent physics more187

consistently with our knowledge of fundamental physics, yet give inferior output when188

compared to observations if they have fewer compensating biases or are tuned less to rep-189

resent present-day or historical observations. Knutti (2010) provides a high-level discus-190

sion of the topic of model democracy, uncertainty, weighting, evaluation, calibration and191

tuning in the context of decision making.192

Apart from explicit model weighting or selection choices, seldomly recognized im-193

plicit choices based on values (other than widely acknowledged epistemic values such as194

openness, objectivity, evidence, and impartiality) influence model development, evalu-195

ation, selection, weighting, interpretation, and communication of results (Pulkkinen, Un-196

dorf, Bender, Wikman-Svahn, et al., 2022; Pulkkinen, Undorf, & Bender, 2022; Lenhard197

& Winsberg, 2010; Winsberg, 2012; Undorf et al., 2022). The climate system is too com-198

plex to be captured by models perfectly. Some of the limitations stem from limited com-199

putational resources, uncertainty about how to represent processes at a coarse level through200

parametrizations, and a lack of observational data. Thus, model construction necessi-201

tates and is affected by decisions regarding a variety of compromises. Traditionally, a202

pursuit of purely knowledge-oriented science has been desired in order to avoid conclu-203

sions distorted by scientists’ views, values and interests. However, some authors empha-204

size that purely knowledge-oriented construction of climate models is impossible because205

of decisions involved in the model development (Parker & Winsberg, 2018; Parker, 2020;206

Jebeile & Crucifix, 2021; Morrison, 2021). These decisions can be driven by not only the207

desire for creating an unbiased objective representation of the climate system, but also208

by purposes, views, values, interests and limitations. They include for example a spe-209

cific focus on modeling a certain geographical region and quantities of interest, the avail-210

ability of validation data influenced by locations of observations, compromises regard-211

ing what errors are permissible, types of tuning (Schmidt et al., 2017), decisions involved212

in earlier versions of the same model or ancestral models resulting in inherited values,213

limited knowledge and time of the researchers, and limited resources. In turn, they can214

also perpetuate certain types of societal biases against traditionally understudied and215

underrepresented regions. Rarely are such decisions or values and interests which drive216

them explicitly acknowledged, which makes it difficult to quantify their impact on MMEs.217

Although less acknowledged, interests can also include reasons for pursuing certain re-218

search or development which are not driven by practical reasons but by curiosity. In a219

broader view, the development of climate models has aspects of iterative development,220

inheritance, recombination, cooperation, competition and filling of different niches. In221

this way, it can be considered a collective optimization process with the goal of describ-222

ing the important and diverse properties of the climate system (as considered by var-223

ious actors) through pluralism in the face of limited knowledge and computational re-224

sources, both of which also keep changing.225
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We can define the structure (code) of a model as based on a set of hypotheses about226

reality as well as computational realizations of such hypotheses. A desirable feature of227

an MME would be that models represent samples from the hypothesis space with prob-228

ability equal to our degree of belief that the hypothesis is true (note that this is differ-229

ent from a uniform sampling of the hypothesis space, which would be both impossible230

and undesirable due to its size). However, this is rarely the case with existing MMEs,231

and it is not easily quantifiable. It is generally not desirable that the model output of232

individual models in an MME is the most unique, because one would still want all mod-233

els to converge as closely as possible on the true representation of physical processes. Here,234

we define a “true representation” in limited terms as a pragmatically-oriented concep-235

tualization of the Earth system, which for example might not include the anthroposphere236

as commonly externalized in CMIP models through scenarios. Models can be similar in237

their output because they are convergent on the best representation of reality or because238

of code similarity, and this limits the use of model output as a measure of model depen-239

dence. We note that some authors advocate against a value-free ideal to which models240

should converge (Parker & Winsberg, 2018; Parker, 2020).241

As a conceptual model (Figure 1), we can consider models in an MME to be sam-242

ples corresponding to representations of a physical reality in a hypothesis space. Here,243

representation is supposed to mean code which produces output for given initial and bound-244

ary conditions, i.e. without considering internal variability. While the true physical rep-245

resentation is unknown and impossible to simulate due to computational constraints, our246

collective belief that a given representation is true can be conceptualized theoretically247

by a probability density function (PDF). Ideally, models in an MME are independent248

samples from this PDF (Figure 1a). In actual MMEs (Figure 1b), however, models are249

dependent and tend to be clustered together for reasons incompatible with the PDF, such250

as the inclusion of several configurations or resolutions of a single model, selective shar-251

ing of code between models for reasons other than meritocracy (such as availability or252

political and organizational decisions), or model output availability. Therefore, if a PDF253

or its statistics are estimated from this MME, they will be biased compared to the ac-254

tual PDF. The aim is then to compensate for this bias with appropriate model weight-255

ing, selection or more sophisticated techniques such as emergent constraints. Even if we256

could estimate the PDF in an unbiased way, the value with the maximum likelihood or257

the mean are unlikely to coincide with the true physical representation, because such a258

PDF only represents our belief that a given physical representation is true, which is lim-259

ited by our knowledge. Note that model dependence itself does not preclude that an es-260

timate of the PDF is unbiased. For example, in the Metropolis algorithm (Metropolis261

et al., 1953), an unbiased estimate of a PDF is generated by sequentially producing a262

chain of samples which are close to each other. After a large enough number of itera-263

tions, an unbiased estimate of the PDF can be inferred from the collection of all sam-264

ples, despite close correlation between adjacent samples in the chain. Other aspects not265

considered in Figure 1 are that our knowledge about the climate system is shaped by var-266

ious decisions such as which parts of the climate system have been considered interest-267

ing to study or observe, and individual models are also affected by such decisions dur-268

ing their development. As mentioned above, some models even have a particular explic-269

itly stated purpose, such as ACCESS-CM, E3SM, IITM ESM and NZESM. The conse-270

quence of this is that models are not only biased samples of the PDF due to code de-271

pendence, but also due to value and interest-based decisions. For the same reasons they272

can also converge or diverge.273

None of the model weighting methods mentioned above are without issues. Per-274

formance weighting can disregard models whose physics representation is relatively far275

from the most likely representation but still plausible, thus artificially narrowing the spread.276

Model dependence weighting based on output or code can disregard models which are277

close to other models but were chosen to be based on this model because of its perceived278

quality, thus preventing such an MME from narrowing down on the true representation279
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Ideal case Realistic case
Models sample the space

according to the PDF
Models sample the PDF

in a biased manner because of clustering

(hypothesis space)(hypothesis space)

True physical representation Model representation by familyModel representation

(a) (b)

U
nnorm

alised probability

1

0

Figure 1. A theoretical illustrative example of model sampling of the model hypothesis space

(model structural uncertainty), representing realizations of physical climate processes (model

structure). The shading indicates a probability density function (PDF) quantifying our collective

belief that a certain representation is true. In an ideal case (a), models are unbiased samples

from this PDF, allowing us to estimate the PDF from a multi-model ensemble (MME). In reality

(b), they form clusters because of structural model dependence (code sharing) as assumed and

discussed in the introduction, sampling the PDF in a biased manner. They might also deviate

from the PDF for a number of other reasons. Weighted sampling is necessary to estimate the

PDF from such an MME. The unknown true physical representation, not coinciding with the

PDF maximum or mean, is indicated by a red dot. For illustrative purposes, the hypothesis space

is visualized in a 2-dimensional space. In reality, this space has a large number of dimensions

and the PDF might not be symmetric. Model marker colors (shapes) in (b) indicate different

hypothetical model families, within which models are structurally related. Note that the PDF

represents model structure and might not correlate with model output PDF.
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of climate physics (as defined in the limited terms above). Dependence weighting based280

on output can mistakenly identify two models as similar when they are in fact indepen-281

dent, or fail to identify models with significant code dependence. Weighting based on282

diversity can give too much weight to outliers and too little weight on models more densely283

clustered around the most likely representation, thus artificially increasing the spread.284

Recently, multiple models participating in CMIP6 (Eyring et al., 2016) predicted285

much higher effective climate sensitivity (ECS) than the assessed range of the IPCC Sixth286

Assessment Report (Masson-Delmotte et al., 2021). This was exacerbated by the fact287

that some models contributed multiple runs, making simple multi-model means poten-288

tially unreliable. Voosen (2022) cautioned that using models which predict too much warm-289

ing compared to the range assessed by the AR6 can produce wrong results, and there-290

fore model democracy should be replaced with model meritocracy. Partly due to the lim-291

itations of the simple multi-model mean, the authors of the AR6 departed from the use292

of multi-model means to quantify ECS and transient climate response (TCR), and in-293

stead used a multi-evidence approach similar to Sherwood et al. (2020), although a sim-294

ple multi-model mean is used in other parts of the report.295

2 Motivation and Objectives296

Code dependence in CMIP models is not well explored, especially when it comes297

to code sharing between modeling groups. This hinders model evaluation studies, which298

sometimes regard the CMIP MME as an opaque set of models [e.g. Meehl et al. (2020);299

Schlund et al. (2020); Zelinka et al. (2020), but also many parts of AR6]. To gain insights300

into the whole MME, we map the code genealogy of all CMIP atmosphere GCMs (AGCMs),301

atmosphere–ocean GCMs (AOGCMs), and ESMs. Much of the information about code302

dependence is available in literature as well as CMIP model metadata and online resources303

of modeling groups, but has not been systematically organized across CMIP phases. When304

determining code relations, our focus is on the atmospheric component and atmospheric305

physics due to the fact that they are currently the main source of model uncertainty in306

climate sensitivity, dominated by cloud feedback (Wang et al., 2021a; Forster et al., 2021;307

Zelinka et al., 2020). Steinschneider et al. (2015) also identified the atmospheric com-308

ponent as being a particularly important factor determining the similarity of climate pro-309

jections of temperature and precipitation between models. However, other model com-310

ponents such as the ocean can also have an impact on the feedbacks and climate sen-311

sitivity (Gjermundsen et al., 2021). We present a model weighting algorithm based on312

the model code genealogy, and investigate whether it makes a difference in multi-model313

means of ECS, effective radiative forcing (ERF), climate feedbacks, and global mean near-314

surface temperature (GMST) time series. The algorithm can be used to produce weights315

for any given subset of CMIP models. In addition, we explore more simple weighting meth-316

ods based on model family, institute, and country, and analyze whether model families317

differ significantly in their predictions from other model families and a simple multi-model318

mean.319

3 Data and Methods320

3.1 Data321

In our analysis we focus on AGCMs, AOGCMs, and ESMs in the last three phases322

of CMIP (3, 5, and 6). The CMIP5 and CMIP6 model output data from the control (pi-323

Control), historical, Shared Socioeconomic Pathway 2-4.5 (ssp245 ), Representative Con-324

centration Pathway 4.5 (rcp45 ), abrupt quadrupling of CO2 (abrupt-4xCO2 ), and 1%325

yr−1 CO2 increase (1pctCO2 ) experiments were acquired from the public archives on the326

Earth System Grid (CMIP5, 2022; CMIP6, 2022). The equivalent data from CMIP3 were327

not analyzed here, but we include all CMIP3 models in the model code genealogy. We328

used historical global temperature data from the Hadley Centre/Climatic Research Unit329
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global surface temperature dataset version 5 (HadCRUT5) (Morice et al., 2021) obtained330

from the Met Office Hadley Centre (2022). In order to analyze model code genealogy,331

we performed a broad literature survey, complemented by CMIP model metadata and332

information available online, particularly modeling groups’ websites. In total, we traced333

the genealogy of 167 models, of which 114 were participating in CMIP, and the rest were334

related to the CMIP models and thus necessary for reconstructing the genealogy. The335

model genealogy information, including related references, is also available in Table S1.336

Along with relations between models, we identified the model institute, the country where337

the institute resides, and the model family (defined by the oldest ancestral model in the338

genealogy). Model parameters such as ECS, TCR, ERF, and climate feedbacks were sourced339

from Zelinka et al. (2020) and the AR6. We use effective climate sensitivity calculated340

by Zelinka (2022), as an approximation of equilibrium climate sensitivity.341

3.2 Weighting Methods342

We applied several statistical weighting methods on the CMIP MMEs:343

1. Simple weighting. Every model run is given equal weight. By “model run” we mean344

a model resolution or configuration (as listed in Table S1 in the columns CMIP3/5/6345

names), not multiple simulations performed with the same model but different ini-346

tial conditions.347

2. Family weighting. Model families, defined as a complete branch as shown in Fig-348

ure 2 (discussed later in section 4.1), were given equal weight. This weight was349

further subdivided equally between models within the family.350

3. Institute weighting. Model institutes, as shown in Figure 2 as labels on grey ar-351

eas, were given equal weight. This weight was further subdivided equally between352

models within the institute.353

4. Country weighting. Model host countries, as shown in Figure 2 as labels on grey354

areas, were given equal weight. This weight was further subdivided equally be-355

tween models of the same country.356

5. Ancestry weighting. The oldest ancestor models (marked with a thick outline in357

Figure 2) were given equal weight. This weight was subdivided gradually through358

branches to descendant models. This method is described in detail in Appendix359

Appendix A.360

6. Model weighting. All models are given the same weight. This is different from the361

simple weighting – see the note below.362

Note that in all of the above, if a model supplied multiple runs of different configura-363

tion or resolution, the model weight was further subdivided equally between the runs.364

For clarity, in the following text references to the weighting methods and weighted means365

corresponding to the methods above are italicized.366

3.3 Statistical Significance367

Statistical significance in climate feedbacks, sensitivity, and forcing in section 4.3368

was calculated using a Bayesian simulation with PyMC3 (Salvatier et al., 2016). The dif-369

ference between a simple mean of models within a family and a simple multi-model mean370

was marked as significant if the magnitude difference between the two means was larger371

than zero with 95% probability. The PyMC3 model is provided in the supplementary372

code.373
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4 Results374

4.1 Model Code Genealogy and Model Families375

Figure 2 presents a graph of model code genealogy based on available literature in-376

cluding all CMIP3, CMIP5 and CMIP6 AOGCMs and ESMs, except for some model sub-377

derivatives and configurations, which are grouped under a common model name. The378

model relations were identified with a primary focus on the atmospheric component, and379

in particular atmospheric physics, which is a compromise due to the fact that some mod-380

els inherit multiple components (atmosphere, ocean, cryosphere, chemistry, etc.), or in381

some instances provide their own implementation of atmospheric dynamics while inher-382

iting atmospheric physics from a parent model. Some models comprised multiple model383

runs in CMIP (configurations, resolutions or variations of components), and we grouped384

these together under a single model name. We identified 14 different model families –385

groups of models which share the same oldest ancestor model (marked with a thick out-386

line in Figure 2 and also listed in Table S2). The models come from 38 different insti-387

tutes or institute groups and 15 different countries. Institutes are based on the institute388

attribute of the CMIP data sets (CMIP3, 2022; CMIP5, 2022; CMIP6, 2022) for CMIP389

models and reference publications or online resources for other models, separated by a390

slash if multiple institutes were involved. Country is the country of the main institute391

(defined loosely as the institute credited for most of the models in the group, or where392

the development originated), with the exception of the European community (EC)-Earth393

Consortium models, for which the assumed “country” is Europe. We recognize two kinds394

of model relations: a parent–child relation, when the child model is a code-derivative of395

the parent model with a different name (in the sense of fully or partially inheriting the396

code of the atmospheric component), and a relation between versions of the same model.397

Model counts per model family, country, and institute in each CMIP phase are listed in398

Table S2.399

We make an exception to the rule that a model family is defined by the oldest an-400

cestral model for the ECMWF- and CCM-derived models, for which the model ECMWF401

is a common ancestor. We split this model family into two model families of ECMWF402

and CCM (beginning with CCM0B). This is a subjective choice made for our analysis403

in order to account for the fact that this split happened in early stages of the develop-404

ment in the 1980s (Edwards, 2011), and the separate CCM and ECMWF model fam-405

ilies are much larger and more diverse than the other model families. The model fam-406

ilies used further in our analysis are: ECMWF, CCM, CanAM, CSIRO, IPSL, GEOS,407

INM, UA MCM, GFDL, GFS, MIROC, NICAM, UCLA GCM, and HadAM.408

Some of the identified model families are relatively small, such as CSIRO, GEOS,409

GFS, INM, UA MCM, NICAM, with fewer than four models participating in CMIP, while410

others are much larger, e.g. CCM with 28 models and ECMWF with 23 models in CMIP411

(here by “model” we mean the main model as in Figure 2 rather than model runs in CMIP).412

In terms of model runs, CCM, ECMWF, and HadAM are particularly numerously rep-413

resented in CMIP6 with 32, 27, and 12 model runs, amounting to about 70% of the en-414

tire CMIP6 MME (Table S2). This means that there is a strongly uneven model rep-415

resentation in CMIP6. The situation was getting more pronounced with successive CMIP416

phases: in CMIP5 and CMIP3 the share of the three most represented model families417

in terms of model runs is smaller at 52% and 50%, respectively. The size of model fam-418

ilies and the diversity of models within a family are clearly influenced by the availabil-419

ity of model code. For example, the IFS/ARPEGE model is widely licensed to partic-420

ipating modeling groups in Europe, and therefore is used as a basis for a multitude of421

different models on the continent. The CCM-derived models have publicly available source422

code, which has been used extensively by many different modeling groups internation-423

ally. Other models with private code are used much more narrowly, such as CanAM, CSIRO,424

IPSL or INM, which are only used by their own modeling group (and possibly a few col-425
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Figure 2. Model code genealogy of models participating in the Coupled Model Intercom-

parison Project (CMIP) phase 3, 5, and 6, including their common ancestor models. Models

are distinguished by their complexity into atmosphere general circulation models (AGCMs),

atmosphere–ocean GCMs (AOGCMs), and Earth system models (ESMs), indicated by color.

Horizontal arrows indicate inheritance between multiple versions of the same model. Vertical

solid arrows indicate inheritance between different models. Vertical dotted arrows indicate in-

heritance from an AGCM to an AOGCM or ESM (this can also mean that the model is used as

a component of the more complex model). The grey shaded boxes indicate an institute and the

main country or region where the development was conducted. Numbers in circles indicate the

CMIP phase. Model boxes with a thick outline indicate the oldest model of the model family.

The genealogy only traces models necessary for placing the CMIP models in the graph and omits

versions not included in CMIP. The genealogy was reconstructed based on available literature,

CMIP metadata, and online resources. Table S1 contains source data corresponding the this

figure including literature references for the model relations.
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laborating organizations). Publicly available or widely licensed models usually have much426

greater participation in CMIP and an outsized impact in the MMEs.427

Relations between model code can often be complex, ranging from a model com-428

ponent shared with an “upstream” project (such as models in the CCM family using the429

Community Atmosphere Model [CAM]) to models taking atmospheric physics implemen-430

tations from a parent model and developing their own atmospheric dynamics. Likewise,431

the ocean, land, sea ice, and biochemistry components are swapped for other components432

in some derived models. This complicates the notion of a model derivative. Because cli-433

mate feedbacks in the atmosphere are currently the largest source of uncertainty in de-434

termining climate sensitivity, it is perhaps the most important model component to use435

as a determinant in model code genealogy. This is a subjective choice, and other choices436

would be possible when constructing a model code genealogy.437

4.2 Climate Feedbacks and Sensitivity438

Here, we evaluate how the proposed ancestry weighting and several simpler types439

of weighting impact the calculation of climate feedbacks and climate sensitivity in the440

CMIP MMEs. Zelinka et al. (2020) analyzed climate feedbacks, ECS, and ERF in CMIP5441

and CMIP6. We perform the same analysis using their estimates of model quantities (Zelinka,442

2022), but with different methods of weighting. Figure 3 shows results analogous to Fig-443

ure 1 in Zelinka et al. (2020), but as means calculated using the different weighting meth-444

ods relative to the simple multi-model mean. Following Zelinka et al. (2020), the “net445

[feedback] refers to the net radiative feedback computed directly from TOA fluxes, and446

the residual is the difference between the directly calculated net feedback and that es-447

timated by summing kernel-derived components.” The differences in feedbacks between448

the simple mean and the other types of weighting is up to about 150 mWm−2K−1 in mag-449

nitude in CMIP6 and 80 mWm−2K−1 in CMIP5. The different types of weighting of-450

ten do not agree, except for the family and ancestry weighting, which give very similar451

results. If we focus on the weighting methods which we expect to be the most accurate452

in terms of accounting for model code sharing, the ancestry and family weighting, the453

largest difference from the simple mean is in the cloud feedbacks (total, shortwave and454

longwave), with relatively large difference in ECS and ERF. This is perhaps not surpris-455

ing given the very large spread in model cloud feedbacks in the CMIP MMEs.456

Interestingly, when we quantify the difference in feedback strength between the CMIP6457

and CMIP5 MMEs (Figure 3c), we see that the ancestry weighting reduces the differ-458

ence in cloud feedbacks between the two CMIP phases substantially. The magnitude dif-459

ference is reduced from 77 to -26 mWm−2K−1 for the total cloud feedback, from 145 to460

-68 mWm−2K−1 for the shortwave (SW) cloud feedback, and from -70 to 41 mWm−2K−1
461

for the longwave (LW) cloud feedback. However, the net and residual feedback magni-462

tude difference is increased from 61 to -71 mWm−2K−1 and from 3 to -33 mWm−2K−1,463

respectively. We define the root mean square difference (RMSD) between CMIP6 and464

CMIP5 calculated across the elementary feedbacks (Planck, water vapor (WV), lapse rate465

(LR), albedo, SW cloud, LW cloud) as:466

RMSD =

(
1

n

n∑
i=1

(λi,CMIP6 − λi,CMIP5)
2

)1/2

,

n = 6,

λi = (λPlanck, λWV, λLR, λalbedo, λSWcloud, λLWcloud)i , (1)

where λi are means of individual feedbacks calculated from either CMIP5 (λi,CMIP5) or467

CMIP6 (λi,CMIP6). When the RMSD is calculated from the ancestry weighted feedback468

means compared with simple means, it is reduced by about 40% from 67 to 41 mWm−2K−1.469

Therefore, it is possible that a substantial part of the difference in feedbacks between470

CMIP6 and CMIP5 can be explained by a suitable choice of weighting which takes into471
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Figure 3. Climate feedbacks, effective climate sensitivity (ECS), and effective radiative forc-

ing (ERF2x) in the Coupled Model Intercomparison Project (CMIP) phases 6 (a) and 5 (b)

under different weighting methods (model, institute, country, ancestry, and family) relative to a

simple mean (section 3.2). (c) Difference between the CMIP6 and CMIP5 estimates. The legend

in (c) shows the root mean square difference (RMSD) between the CMIP6 and CMIP5 estimates

(section 4.2). The climate feedbacks are: Planck, water vapor (WV), lapse rate (LR); surface

albedo (Albedo); total cloud feedback (Cloud); shortwave cloud feedback (CloudSW); longwave

cloud feedback (CloudLW); net feedback (Net); residual feedback (Residual). The underlying data

are from Zelinka (2022), described in Zelinka et al. (2020).

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(a) (b)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ECS (K)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 w
ei

gh
t

CMIP6

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ECS (K)

0.0

0.2

0.4

0.6

0.8

CCM
CSIRO
CanAM
ECMWF
GFDL

HadAM
INM
IPSL
MIROC
UCLA GCM

GFS

1.0

CMIP5

Figure 4. Statistical weights and effective climate sensitivity (ECS) of models in the Coupled

Model Intercomparison Project (CMIP) phases 6 (a) and 5 (b) under the ancestry weighting.

The model weights are normalized so that the maximum value is 1.0. The models are classified

by their family, indicated by symbols. The shaded bars show a simple mean of model weights in

the corresponding range of ECS. The dashed lines show the same as the bars, but multiplied by

the number of models in the ECS range and normalized to sum to one.

account model code dependence. When the RMSD is calculated for family weighting (not472

shown in the plot), the RMSD is almost the same as ancestry weighting at 42 mWm−2K−1.473

But it is less for the model weighting (reduced to 60 mWm−2K−1), and a slight increase474

in RMSD is seen for institute (increased to 95 mWm−2K−1) and country (increased to475

79 mWm−2K−1) weighting. This could mean that only the ancestry, family, and to a476

lesser extent model weighting can explain some of the feedback difference between CMIP6477

and CMIP5. The result is consistent with the expectation that the ancestry weighting478

is more suitable than the other types of weighting, which are less strongly related to the479

model code genealogy.480

For ECS and ERF, the differences between weighting methods are also substan-481

tial – up to about 0.3 K for ECS and 80 mWm−2 for ERF2x in magnitude (Figure 3a,482

b). In comparison, the difference in simple mean between CMIP6 and CMIP5 is 0.47 K483

in ECS and 114 mWm−2 in ERF2x, and the standard deviation is 0.73 K and 1.06 K in484

ECS (CMIP5 and CMIP6, resp.) and 390 mWm−2 and 490 mWm−2 in ERF2x (CMIP5485

and CMIP6, resp.). The difference in ensemble mean ECS between CMIP6 and CMIP5486

becomes much smaller with ancestry weighting, falling from 0.47 K (simple mean) to 0.20487

K (ancestry weighting), but the difference in ERF2x is increased from 114 to 226 mWm−2.488

Thus, it is possible that a weighting method which accounts for model code dependency489

can explain some of the difference in ECS between CMIP5 and CMIP6 as resulting from490

an over-representation of models with high ECS in the CMIP6 ensemble.491

Figure 4 shows model ECS and the statistical weights of models under the ances-492

try weighting. It can be seen that in CMIP6, the model weight is the highest for the low-493

est ECS range and progressively lower with increasing ECS (except for the highest ECS494

range), due to the fact that models with higher ECS are generally populated by the large495

model families HadAM, CCM, and to a lesser extent IPSL and ECMWF, while mod-496

els with lower ECS come from more diverse families. Because of how the ancestry weight-497
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ing algorithm works, models in larger families generally have lower per-model weight.498

In CMIP5 model weights are more even across the ECS range than in CMIP6. Partly,499

the higher simple mean of ECS in CMIP6 is also the result of ECS above 5 K being pop-500

ulated by models, whereas in CMIP5 there are no models in this range. Thus, the higher501

simple mean ECS in CMIP6 can be attributed mostly to the HadGEM and CCM model502

families, and their effect is reduced under the ancestry weighting by smaller per-model503

weight given to models in large model families. Figure 4 also shows the weights multi-504

plied by the number of models in each ECS range (dashed lines). While the two most505

extreme ECS ranges in CMIP6 (below 2 K and above 5.5 K) have relatively large per-506

model weights, the number of models in these ranges is small (two), and they have lit-507

tle overall effect on the ancestry-weighted ECS mean.508

4.3 Climate Feedbacks and Sensitivity by Model Family509

We analyzed climate feedbacks and sensitivity by model family (Figure 5). Because510

model family weighting showed results similar to ancestry weighting (section 4.2), it should511

be a good proxy for ancestry weighting, while allowing us to separate the values into (po-512

tentially clustered) groups. Some model families tend to have similar values of climate513

feedbacks. This is most apparent in the cloud feedbacks, where differences between mod-514

els are generally large. The HadAM family of models tend to be closely clustered in all515

climate feedbacks, despite the comparatively large size of the model family (6 models in516

the CMIP6 plot). Their total cloud and SW cloud feedback is consistently larger than517

the mean and their LW cloud feedback is consistently smaller than the mean (in this sec-518

tion we refer to simple mean as “mean”). The ECMWF family of models (14 models in519

the CMIP6 plot) have consistently below-mean SW cloud feedback, mostly below-mean520

total cloud feedback and almost consistently above-mean LW cloud feedback. The CCM521

family is the largest (17 models in the CMIP6 plot) and also the most varied, showing522

a large spread between its models in CMIP6, but a small spread in CMIP5. Despite this,523

they have some characteristic properties, such as in mostly above-mean total and SW524

cloud feedback and below-mean LW cloud feedback in CMIP6; mostly below-mean to-525

tal cloud feedback, but also above-mean lapse rate and surface albedo, and below-mean526

water vapor feedback in CMIP5. In CMIP6, the UCLA GCM family of models (5 mod-527

els in the CMIP6 plot) have consistently below-mean total and SW cloud feedback, and528

mostly above-mean LW cloud feedback.529

In terms of ECS, the CCM and ECMWF families of models show a large and rel-530

atively even spread around the multi-model mean. In this case, the ancestry or family531

weighting is unlikely to make a significant difference in terms of the influence of the fam-532

ily on the overall MME mean. In CMIP6, the HadAM, and IPSL family of models are533

all more sensitive than the mean, and the UCLA GCM family of models are all less sen-534

sitive than the mean. ECS in of the HadAM family is significantly above-mean, and ECS535

of the UCLA GCM family is significantly below-mean (at 95% confidence).536

In summary, some relatively large families of models show consistent properties when537

it comes to climate feedbacks and ECS, while others show a large spread. This suggests538

that models in some families have substantial interdependence which translates into clus-539

tering of climate feedbacks and ECS. The CCM and ECMWF families are quite diverse,540

but despite this they show common characteristics in some climate feedbacks.541

4.4 Global Mean Near-surface Temperature Time Series542

To analyze the impact of the ancestry and model family weighting methods on MME543

statistics, we examine the case of GMST in the historical, SSP2-4.5, abrupt-4xCO2, and544

1pctCO2 CMIP6 experiments and the historical, RCP4.5, abrupt-4xCO2, and 1pctCO2545

CMIP5 experiments. Figures 6 and 7 show GMST time series in the CMIP6 and CMIP5546

experiments (respectively), grouped by model family, as well as family and ancestry weighted547
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Figure 5. Climate feedbacks, effective climate sensitivity (ECS), and effective radiative forc-

ing (ERF2x) arranged by model family in the Coupled Model Intercomparison Project (CMIP)

phases 5 (b, d) and 6 (a, c). Model family is identified by the oldest ancestor model. In the leg-

end, numbers in parentheses are the number of models in the family present in the plot. Model

families whose simple mean is significantly different (with 95% confidence) from the simple multi-

model mean are marked with an asterisk (“*”). The underlying data are from Zelinka (2022),

described in Zelinka et al. (2020).
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Figure 6. Time series of global mean near-surface temperature in CMIP6 experiments by

model family and the simple multi-model, ancestry, and family mean (section 3.2). The model

family time series are a simple mean of models in the family. The time series are smoothed with

a Gaussian kernel with a standard deviation of 7 years. The first and the last 14 years of the

time series are not shown to avoid artifacts caused by the smoothing. The values are relative to

the mean of the first 30 years of the individual time series in (a) and (b), and relative to the

mean of the whole individual time series of the piControl experiment in (c) and (d). Shaded

areas are confidence bands representing the 68th percentile range. The vertical divider in the

historical + SSP2-4.5 plot separates the time ranges of the two experiments. In the legend, the

number in the parentheses is the number of models in the family. All CMIP5 and CMIP6 models

with necessary data available on the Earth System Grid were included in the plots.
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Figure 7. The same as Figure 6 but for CMIP5, and the RCP4.5 experiment instead of SSP2-

4.5.
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time series. Included are all models which provided the necessary data. While some model548

families have many members in this analysis, such as CCM (7 to 22 members, depend-549

ing on the experiment and CMIP phase), ECMWF (3 to 16 members), HadAM (2 to 6550

members), and UCLA GCM (1 to 5 members), other families have less than 4 members,551

and therefore it is harder (or impossible) to assess model spread in the smaller families.552

The larger families such as CCM and ECMWF exhibit a large spread and a middle-of-553

the-range family mean, although the spread of the ECMWF family in the CMIP5 ex-554

periments historical + RCP4.5 (combined experiments), abrupt-4xCO2, and 1pctCO2555

is relatively narrow. The other larger family HadAM has a relatively small spread in most556

experiments, consistent with the results of section 4.3. Notably, in the CMIP6 histor-557

ical experiment, HadAM is the coldest of all model families, but becomes the second and558

third warmest in the rest of the CMIP6 experiments by the end of the simulation. The559

UCLA GCM family of models have consistently relatively low GMST in the CMIP6 abrupt-560

4xCO2 and 1pctCO2 experiments, despite the relatively large size of the group (here 4561

to 5 members). Model families like MIROC, INM, and CanAM (each containing 2 mem-562

bers in the CMIP6 plots, except for CanAM in abrupt-4xCO2 with only member) have563

almost no spread in the CMIP6 experiments, suggesting that the two models in each of564

these model families are very similar.565

The family and ancestry weighted GMST time series tend to nearly overlap in all566

cases, which points to a high degree of outcome similarity between the two types of weight-567

ing also noted in the preceding sections. Interestingly, the family and ancestry weighted568

mean is warmer than the simple multi-model mean in the CMIP6 historical experiment569

(in the CMIP5 historical experiment it is slightly colder by the end of the simulation)570

and also more consistent with observations, whereas in the 1pctCO2 and abrupt-4xCO2571

experiments it is colder than the simple mean (in both CMIP6 and CMIP5). When CMIP6572

is compared with CMIP5, model families tend to exhibit similar cold or warm propen-573

sity, such as INM, GFDL, UCLA GCM being relatively cold in the non-historical exper-574

iments, and CanAM, HadAM, IPSL being relatively warm. This suggests that model fam-575

ilies tend to maintain their climate sensitivity inclination across model generations.576

5 Discussion and Conclusions577

We mapped the code genealogy of 167 models in and related to CMIP3, CMIP5,578

and CMIP6 with a focus on the atmospheric component and the atmospheric physics.579

We showed that all models can be grouped into 14 model families based on code inher-580

itance, although large amounts of code may have been replaced in some models, and there-581

fore they are only weakly related to other models in the same family. In addition, we mapped582

the institute and country of origin of the models. Some model families, such as CCM,583

ECMWF, and HadAM, are particularly large. The CCM-derived models were extensively584

forked internationally, most likely due to the open availability of the code. The IFS/ARPEGE585

(licensed) code was the basis for many European models. The HadGEM code was shared586

internationally within a consortium. Together, these three large model families domi-587

nate CMIP6, accounting for 70% of all model runs, an increase from about 50% repre-588

sented by the three largest model families in CMIP3 and CMIP5. Based on the code ge-589

nealogy, we developed an ancestry weighting method, the aim of which was to more fairly590

weigh code-related models than a simple multi-model mean, thus mitigating structural591

model dependence effects in MMEs. We showed that when applied on CMIP5 and CMIP6,592

the ancestry and family weighting produced substantial differences in the climate feed-593

backs, sensitivity, and forcing, especially the cloud feedbacks (total, shortwave and long-594

wave), ECS, and ERF2x relative to the difference in simple mean between CMIP6 and595

CMIP5 and relative to the standard deviation of the quantities in CMIP5 and CMIP6.596

The ancestry and family weighting methods produce very similar results. The ancestry597

and family weighting seem to be able to explain some of the difference between CMIP6598

and CMIP5 (about 40% RMSD reduction in climate feedbacks, and about 60% RMSD599
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reduction in ECS under the ancestry weighting). This suggests that increased contribu-600

tions from many code-related models in CMIP6 compared to CMIP5 were able to sub-601

stantially affect the simple multi-model mean. Applying these methods to analyze cli-602

mate feedbacks, sensitivity, and forcing by model family revealed that models in some603

families gave narrowly similar results (HadAM and UCLA GCM), and others in some604

cases had relatively wide spread but consistently above- or below-mean values (ECMWF605

and CSM). This suggests that code similarity in some cases translates to similarities in606

climate properties, but in other cases there is a large spread despite model similarity. Lastly,607

we analyzed GMST time series in four CMIP6 and CMIP5 experiments, and showed that608

models in some larger families (HadAM, and in some cases ECMWF) have similar GMST.609

The family and ancestry weighting showed very similar results – more warming than the610

simple mean (and closer to observations) in the CMIP6 historical experiment and less611

warming in the CMIP6 1pctCO2 and abrupt-4xCO2 experiments. This suggests that these612

methods can partially balance the effect of the over-representation of model families with613

multiple similar models, like HadAM. Model families tend to exhibit tendencies toward614

greater or lower warming than the MME mean in response to increased CO2 across the615

CMIP generations.616

A limitation of our method of weighting based on model families or model code ge-617

nealogy is that we have not quantified model similarity in other ways than through in-618

heritance. We did not make an attempt to quantify model code independence from their619

parent models, because there is not enough publicly available information on the source620

code. Even if the source code were available, an objective quantification of code inde-621

pendence would require a sophisticated new method of code analysis. Some models have622

code bases which are more independent from their parent models than others. As a re-623

sult, some model families might have members which are almost code-independent from624

the rest of the family. For example, it is possible that models which are related in the625

genealogy diverged enough from their ancestral models that it would be warranted to626

classify them as a separate family. This means that some models can be unjustly under-627

weighted because they are grouped together with models to which they do not bear much628

resemblance or were developed for a different purpose in mind (discussed below). Over-629

coming this limitation would be a relatively difficult task. While it might be possible to630

investigate individual schemes and components in models to partially quantify the sta-631

tistical distances between related models, it would be difficult to do so objectively. Such632

information is also unlikely to be available for all the CMIP participating models. An-633

other possibility would be to analyze the code of models to quantify their similarity. A634

method of accurately quantifying similarity would necessitate analyzing large code bases,635

distinguishing scientific calculations from technical code, accounting for the fact that small636

changes in code can produce large differences in model results, and accounting for model637

runtime configuration. Emerging methods of code analysis based on deep artificial neu-638

ral networks (DANNs) have a potential to be used for this task. DANN-based tools such639

as OpenAI Codex (Chen et al., 2021; OpenAI, 2023), GitHub Copilot (GitHub, 2023)640

and DeepMind AlphaCode (DeepMind, 2023) have been developed to translate natural641

text to computer code. This approach has a potential to be adapted to quantifying code642

similarity. However, regardless of the availability of such methods, access to the model643

code would be necessary. This is a substantial hurdle given that most model code is closed-644

source. Apart from this, the source code of older models (dating back several decades)645

might not be readily available even to the current modeling groups, or even preserved646

at all. In summary, users of our model code genealogy should be mindful that the pro-647

posed weighting methods are only a “first-order” approximation of model similarity, and648

they should make an educated choice when selecting models for an analysis or deciding649

which models to include in a model family for the purpose of weighting.650

Structural dependence between code-related models is sometimes reduced by di-651

verging purposes of models. We did not make an attempt to quantify this because lim-652

itations similar to those mentioned above. The purpose of a model, such as a geograph-653
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ical, process, or quantity focus, is only rarely explicitly stated and it would be difficult654

to objectively quantify this divergence. In such case the family and ancestry weighting655

can give too little weight to those models in the same family or branch of the code ge-656

nealogy which are substantially different from the rest of the models due to their pur-657

pose. One way in which models are divergent within the same family or branch is their658

complexity in terms of being an AGCM, AOGCM or ESM (Figure 2). It can be expected659

that ESMs are substantially different from a related AOGCM due to the inclusion of the660

carbon cycle, vegetation, atmospheric chemistry, biochemistry and other processes. Sim-661

ilarly AGCMs, even though rarely participating in CMIP as standalone models, are ex-662

pected to differ substantially from related AOGCMs because they do not contain a prog-663

nostic ocean component. One way of accounting for this would be to analyze AOGCMs664

and ESMs separately. For example, Meehl et al. (2020) note that emissions feedbacks665

included in the ESM GFDL-ESM4 (Dunne et al., 2020) reduce ECS compared to its par-666

ent AOGCM GFDL-CM4 (Held et al., 2019); GFDL-ESM4 has ECS 3.9 K and GFDL-667

CM4 has ECS 2.6 K. In summary, the focus solely on model code inheritance as presented668

here does not account for this context, introducing limitations to our weighting meth-669

ods.670

To put our results into a broader perspective, we do not argue against the use of671

simple multi-model means, or model output and performance weighting methods in gen-672

eral, but see the presented weighting methods as complementary to the established meth-673

ods. Simple means will likely continue to represent a useful default option (as used, for674

example, in parts of AR6), but other weighting methods may be increasingly important675

due to model duplication in MMEs. It is possible that weighting methods based on model676

structure can capture these interdependencies better than methods based on model out-677

put. We suggest the family weighting, or a similar technique based on selecting a num-678

ber of “independent” model branches from the model code genealogy, as a useful and679

easily implemented method of weighting for MME studies, especially if there is an ex-680

pectation that model duplication is affecting the results.681

The presented model code genealogy (Figure 2) can be further extended as more682

models become available in future CMIP phases. We provide the Scalable Vector Graph-683

ics (SVG) source of this figure so that it can be extended in the future, and all related684

code and data are in the supplementary code under an open source license.685

Our results can facilitate MME assessments, which depend on the knowledge of model686

code relations. They provide a complementary approach to the model output dependence687

methods presented in previous studies. We have shown that as expected, code-related688

models tend to have related climate characteristics, which may help to explain some of689

the difference between CMIP5 and CMIP6. Certain model families stand out in terms690

of ECS or climate feedbacks, which can help in understanding model differences. This691

is especially important given that the model spread in ECS and some climate feedbacks692

have increased in CMIP6 relative to CMIP5. A useful method of accounting for depen-693

dencies among models is weighting model families equally, which has the benefit of be-694

ing simpler to achieve than ancestry weighting. This can be readily employed in MME695

assessments if a more fair model weighting is desired.696

Appendix A Model Ancestry Weight Calculation697

Statistical weights in model ancestry weighting are calculated using the model code698

genealogy in Figure 2. The weights are calculated for a set of models of interest, i.e. those699

models or their runs (configuration or resolution) which are present in an MME.700

Definitions:701
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1. Node is a single model (AGCM, AOGCM or ESM). It can comprise multiple model702

runs (configurations or resolutions) submitted to CMIP. Nodes can have one or703

more parent and child nodes.704

2. Model run is a specific model configuration or resolution submitted to CMIP. Some705

models only have one run in CMIP.706

3. Group is a set of nodes with the same model name but different version numbers.707

In Figure 2, these are connected with horizontal arrows. Group ancestors are all708

node ancestors of all nodes in the group.709

4. Root nodes are nodes which do not have have any ancestors. These are the top-710

level nodes marked with a thick outline in Figure 2.711

5. Root groups are groups which contain a root node.712

6. Active nodes and active model runs are those which are included in the set of mod-713

els of interest, i.e. models for which weights are to be calculated.714

7. Active groups are groups which contain at least one active node.715

8. Child node and child group is a direct descendant of its parent node or parent group.716

9. Descendant of a node or group is a direct or indirect (more than one level deep)717

descendant of the node or group.718

Algorithm steps (note that the definition of x and n varies by step):719

1. Groups and nodes which are not active and have no active descendants are removed720

from the tree.721

2. All nodes and groups are assigned a weight of zero.722

3. All root groups are given the same weight equal to 1/n, where n is the number723

of root groups.724

4. For all groups which have already inherited weight from all of their ancestors (or725

have no ancestors) and are not marked as done, their child groups inherit weight.726

If the parent group is active, each child group’s weight is incremented by 1/(n+727

1), where n is the number of child groups, and the parent group’s weight is set to728

1/(n+1). If the parent group is not active, each child group’s weight is incremented729

by 1/n, and the parent group’s weight is set to zero. The parent group is marked730

as done.731

5. If all groups are marked as done, continue with Step 6. Otherwise, go back to Step732

4.733

6. Within each group, active nodes are given weight equal to x/n, where x is the weight734

of the group and n is the number of active nodes in the group.735

7. For each node, active model runs of the node are given weight equal to x/n, where736

x is the weight of the node and n is the number of active model runs.737
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