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Abstract29

Global storm-resolving models (GSRMs) are the upcoming global climate models. One30

of them is a 5-km Icosahedral Nonhydrostatic Weather and Climate Model (ICON). Its31

high resolution means that parameterizations of convection and clouds, including subgrid-32

scale clouds, are omitted, relying on explicit simulation but still utilizing microphysics33

and turbulence parameterizations. Standard-resolution (10–100 km) models, which use34

convection and cloud parameterizations, have substantial cloud biases over the South-35

ern Ocean (SO), adversely affecting radiation and sea surface temperature. The SO is36

dominated by low clouds, which cannot be observed accurately from space due to over-37

lapping clouds, attenuation, and ground clutter. We evaluated SO clouds in ICON and38

the ERA5 and MERRA-2 reanalyses using about 2400 days of lidar observations and 230039

radiosonde profiles from 31 voyages and Macquarie Island station during 2010–2021, com-40

pared with the models using a ground-based lidar simulator. We found that ICON and41

the reanalyses underestimate the total cloud fraction by about 10 and 20%, respectively.42

ICON and ERA5 overestimate the cloud occurrence peak at about 500 m, potentially43

explained by their lifting condensation levels being too high. The reanalyses strongly un-44

derestimate fog or near-surface clouds, and MERRA-2 underestimates cloud occurrence45

at almost all heights. Outgoing shortwave radiation is overestimated in the reanalyses,46

implying a “too few, too bright” cloud problem. Thermodynamic conditions are rela-47

tively well represented, but ICON is less stable than observations, and MERRA-2 is too48

humid. SO cloud biases are a substantial issue in the GSRM, but it matches the obser-49

vations better than the lower-resolution reanalyses.50

Plain Language Summary51

Global storm-resolving models are climate models with km-scale horizontal reso-52

lution, which are currently in development. Reanalyses are the best estimates of past53

meteorological conditions based on an underlying global model and observations. We eval-54

uated clouds and thermodynamic profiles over the Southern Ocean in one such model,55

as well as two reanalyses, based on 2400 days of ship and station observations. Thanks56

to the high resolution, the model relies entirely on explicit simulation of clouds, instead57

of subgrid-scale parameterizations. For the evaluation, we used ceilometer and radiosonde58

observations and a lidar simulator, which enables a fair comparison with the model and59

reanalyses. We subsetted our results by cyclonic activity and stability. We found that60

the model and reanalyses underestimate a lidar-derived cloud fraction, and the reanal-61

yses do so more strongly. Fog or near-surface clouds are especially underestimated in the62

reanalyses. However, the model and one of the reanalyses also tend to overestimate the63

peak of cloud occurrence at 500 m above the ground, and it tends to be higher. This is64

linked to thermodynamic profiles, which show a higher lifting condensation level. South-65

ern Ocean biases are still an important problem in the model, but an improvement over66

the reanalyses is notable.67

1 Introduction68

Increasing climate model resolution is one way of improving the accuracy of the69

representation of the climate system in models (Mauritsen et al., 2022). It has been prac-70

ticed since the advent of climate modeling as more computational power, memory, and71

storage capacity become available. It is, however, often not as easy as changing the grid72

size because of the complex interplay between model dynamics and physics, which ne-73

cessitates adjusting and tuning all components together. Increasing resolution is, of course,74

limited by the available computational power and a trade-off with increasing parame-75

terization complexity, which is another way of improving model accuracy. Current com-76

putational availability and acceleration from general-purpose computing on graphics pro-77

cessing units (GPUs) has progressed to enable km-scale (also called k-scale) Earth sys-78
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tem models (ESMs) and coupled atmosphere–ocean general circulation models (AOGCMs)79

for research today and will become operational in the future. Therefore, it represents a80

natural advance in climate modeling. Global storm-resolving models (GSRMs) are emerg-81

ing as a new front in the development of high-resolution global climate models, with hor-82

izontal grid resolutions of about 2–8 km (Satoh et al., 2019; Stevens et al., 2019). This83

resolution is enough to resolve mesoscale convective storms, but smaller-scale convective84

plumes and cloud structure remain unresolved. At an approximately 5-km scale, non-85

hydrostatic processes also become important (Weisman et al., 1997), and for this rea-86

son such models are generally non-hydrostatic. The terms global cloud-resolving mod-87

els or global convection-permitting/-resolving models are also sometimes used interchange-88

ably with GSRMs but imply that clouds or convection are resolved explicitly, which is89

not entirely true for GSRMs, as this would require an even higher horizontal resolution90

(Satoh et al., 2019). Representative of these efforts is the DYnamics of the Atmospheric91

general circulation Modeled On Non-hydrostatic Domains (DYAMOND) project (Stevens92

et al., 2019; DYAMOND author team, 2024), which is an intercomparison of nine global93

GSRMs over two 40-day time periods in summer (1 August–10 September 2016) and win-94

ter (20 January–1 March 2020). A new one-year GSRM intercomparison is currently pro-95

posed by Takasuka et al. (2024), with the hope of also evaluating the seasonal cycle and96

large-scale circulation. An alternative to using a computationally costly GSRM is to train97

an artificial neural network on GSRM output and use it for subgrid-scale clouds, as done98

with the GSRM ICON by Grundner et al. (2022) and Grundner (2023).99

The nextGEMS project (nextGEMS authors team, 2024) focuses on the research100

and development of GSRMs at multiple modeling centers and universities in Europe. The101

project also develops GSRM versions of the Icosahedral Nonhydrostatic Weather and Cli-102

mate Model (ICON; Hohenegger et al. (2023)), the Integrated Forecasting System [IFS;103

ECMWF (2023)], and their ocean components at eddy-resolving resolutions: ICON-O104

(Korn et al., 2022) coupled with ICON and Finite-Element/volumE Sea ice-Ocean Model105

[FESOM; Q. Wang et al. (2014)] and Nucleus for European modeling of the Ocean [NEMO;106

Madec and the NEMO System Team (2023)] coupled with IFS. The project has so far107

produced ICON and IFS simulations with three development versions called Cycle 1–108

3 and a pre-final version, with a final production version planned by the end of the project.109

nextGEMS is not the only project developing GSRMs; other GSRMs (or GSRM versions110

of climate models) currently in development include: Convection-Permitting Simulations111

With the E3SM Global Atmosphere Model [SCREAM; Caldwell et al. (2021)], Atmo-112

spheric Model [NICAM; Satoh et al. (2008)], Unified Model (UM), eXperimental Sys-113

tem for High-resolution modeling for Earth-to-Local Domain [X-SHiELD; SHiELD au-114

thors team (2024)], Action de Recherche Petite Echelle Grande Echelle-NonHydrostatic115

version [ARPEGE-NH; Bubnová et al. (1995); Voldoire et al. (2017)], Finite-Volume Dy-116

namical Core on the Cubed Sphere [FV3, Lin (2004)], the National Aeronautics and Space117

Administration (NASA) Goddard Earth Observing System global atmospheric model118

version 5 [GEOS5; Putman and Suarez (2011)], Model for Prediction Across Scales [MPAS;119

Skamarock et al. (2012)], and System for Atmospheric Modeling [SAM; Khairoutdinov120

and Randall (2003)].121

Multiple cloud properties have an effect on shortwave (SW) and longwave (LW)122

radiation. To first order, the total cloud fraction, cloud phase, and the liquid and ice wa-123

ter path are the most important cloud properties influencing SW and LW radiation. These124

properties are in turn influenced by the atmospheric thermodynamics, convection and125

circulation, and both the indirect and direct effects of aerosols. Second-order effects on126

SW and LW radiation are associated with the cloud droplet size distribution, ice crys-127

tal habit, cloud lifetime, and direct radiative interaction with aerosols. In the 6th phase128

of the Coupled Model Intercomparison Project [CMIP6; Eyring et al. (2016)], the cloud129

feedback has increased relative to CMIP5 (Zelinka et al., 2020), which is one of the main130

reasons for the higher climate sensitivity of CMIP6 models.131
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The Southern Ocean (SO) is known to be a problematic region for climate model132

biases (A. J. Schuddeboom & McDonald, 2021; Hyder et al., 2018; Cesana et al., 2022;133

Zhao et al., 2022) due to a lack of surface and in situ observations and being a lower pri-134

ority region for numerical weather prediction (NWP) and climate model development135

because of its distance from populated areas. Nevertheless, radiation biases and changes136

over an area of its size have a substantial influence on the global climate (Rintoul, 2011),137

such as affecting the Earth radiation balance, ocean heat, and carbon uptake (Williams138

et al., 2023), and the SO is also an important part of the global ocean conveyor belt (C. Wang139

et al., 2014). In general, marine clouds have a disproportionate effect on top-of-atmosphere140

(TOA) SW radiation due to the relatively low albedo of the sea surface. The relative lon-141

gitudinal symmetry of the SO means that model cloud biases tend to be similar across142

longitudes.143

Here, we refer to the SO as ocean regions south of 40°S, low-latitude SO as 40–55°S144

and high-latitude SO as south of 55°S. The reason for this dividing latitude is to split145

the SO into about two equal zones, as well as the results by A. J. Schuddeboom and Mc-146

Donald (2021) (Fig. 2b) which show a contrast in CMIP model radiation biases. A. Schud-147

deboom et al. (2019) (Fig. 2) and Kuma et al. (2020) (Fig. 3) also show contrasting ra-148

diation biases in the Hadley Centre Global Environmental Model, which is also supported149

by Cesana et al. (2022) which displays contrasting cloud biases due to the 0°C isotherm150

reaching the surface at 55°S. The findings of Niu et al. (2024), however, support a dif-151

ferent dividing line of 62°S based on cloud condensation nuclei concentration.152

SO radiation biases have been relatively large and systematic compared to the rest153

of the globe since at least CMIP3 (Trenberth & Fasullo, 2010), and the SO SW cloud154

radiative effect (CRE) bias is still positive in eight analyzed CMIP6 models analyzed by155

A. J. Schuddeboom and McDonald (2021) over the high-latitude SO, whereas over the156

low-latitude SO it tends to be more neutral or negative in some models. Too much ab-157

sorbed SW radiation over the SO was also identified in the GSRM SCREAM (Caldwell158

et al., 2021). Compensating biases are possible, such as the “too few too bright” cloud159

bias, characterized by too small cloud fraction and too large cloud albedo (Wall et al.,160

2017; Kuma et al., 2020), previously described by Webb et al. (2001), Weare (2004), M. H. Zhang161

et al. (2005), Karlsson et al. (2008), Nam et al. (2012), Klein et al. (2013), and Bender162

et al. (2017) in other regions and models, which means that a model can maintain a rea-163

sonable SW radiation balance by reflecting too much SW radiation from clouds, but these164

cover too small an area. A study by Konsta et al. (2022) showed that this type of bias165

is still present in six analyzed CMIP6 models in tropical marine clouds, using the GCM-166

Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)167

Cloud Product [CALIPSO–GOCCP; Chepfer et al. (2010)] and Polarization & Anisotropy168

of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar [PARA-169

SOL; Lier and Bach (2008)] as a reference. They suggest improper simulation of subgrid-170

scale cloud heterogeneity as a cause. Compensating cloud biases in the Australian Com-171

munity Climate and Earth System Simulator (ACCESS) – Atmosphere-only model ver-172

sion 2 (AM2) over the SO were analyzed by Fiddes et al. (2022) and Fiddes et al. (2024).173

Possner et al. (2022) showed that over the SO, the DYAMOND GSRM ICON underes-174

timates low-level cloud fraction on the order of 30% and overestimates net downward TOA175

SW radiation by approximately 10 Wm−2 in the highest model resolution run (2.5 km).176

Zhao et al. (2022) reported a similar SW radiation bias in five analyzed CMIP6 mod-177

els over the high-latitude SO and an underestimation of the total cloud fraction on the178

order of 10% over the entire 40–60°S SO. Recently, Ramadoss et al. (2024) analyzed 48 hours179

of km-scale ICON limited-area model NWP simulations over a SO region adjacent to Tas-180

mania against the Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Compo-181

sition Over the southeRn oceaN (CAPRICORN) voyage cloud and precipitation obser-182

vations (McFarquhar et al., 2021). They found the ICON cloud optical thickness was un-183

derestimated relative to Himawari-8 satellite observations but also identified large dif-184

ferences in cloud top phase.185
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In general, sea surface temperature (SST) biases in the SO can originate either in186

the atmosphere (Hyder et al., 2018), caused by too much shortwave heating of the sur-187

face, too little longwave cooling of the surface, or in the ocean circulation. Interactions188

of both are also possible, for example, SST affecting clouds and clouds affecting the sur-189

face radiation. Using the European Centre for Medium-Range Weather Forecasts (ECMWF)190

Reanalysis 5 (ERA5) as a reference, Q. Zhang et al. (2023) have shown that SST biases191

have improved in CMIP6 compared to CMIP5, with SST overall increasing in CMIP6.192

However, over the SO this resulted in an even higher positive bias, especially in the At-193

lantic Ocean (AO) sector of the SO, increasing by up to 1°C. Luo et al. (2023) identi-194

fied that the SO SST bias in an ensemble of 18 CMIP6 models originates not from the195

surface heat and radiation fluxes (using reanalyses as a reference), but from a warm bias196

in the Northern Atlantic Deep Water.197

The main aim of this study is to evaluate the GSRM version of ICON. ICON is de-198

veloped and maintained jointly by Deutscher Wetterdienst, Max-Planck-Institute for Me-199

teorology, Deutsches Klimarechenzentrum (DKRZ), Karlsruhe Institute of Technology,200

and the Center for Climate Systems Modeling. Previous studies have identified substan-201

tial large-scale biases in climate model clouds over the SO, affecting sea surface temper-202

ature and the Earth’s albedo. Our aim is to quantify how well the GSRM ICON sim-203

ulates clouds in this region, particularly in light of the fact that subgrid-scale clouds and204

convection are not parameterized in this model. This region is mostly dominated by bound-205

ary layer clouds generated by shallow convection, and these are problematic to observe206

by spaceborne lidars and radars, which are affected by attenuation by overlapping and207

thick clouds (Mace et al., 2009; Medeiros et al., 2010) and ground clutter (Marchand et208

al., 2008), respectively. Specifically, the radar on CloudSat and lidar on CALIPSO (nei-209

ther of which are now operational) are affected by the above-mentioned issues, result-210

ing in a strong underestimation of cloud occurrence below 2 km relative to ground-based211

lidar observations (McErlich et al., 2021). We hypothesize that this, in turn, can lead212

to systematic biases in low clouds in climate models, which are frequently evaluated against213

CloudSat–CALIPSO products. Reanalyses can also suffer from cloud biases, as these are214

usually parameterized in their atmospheric component and also in regions where input215

observations are sparse. This makes them a problematic reference for clouds over the SO,216

and any biases relative to a reanalysis should be interpreted with caution. Instead, we217

chose to use a large set of ship-based observations conducted with ceilometers and lidars218

on board the RV Polarstern and other voyages and stations as a reference for the model219

evaluation.220

Altogether, we analyzed about 2400 days of data from 31 voyages and one sub-Antarctic221

station covering diverse longitudes and latitudes of the SO. To achieve a like-for-like com-222

parison with the model, we used a ground-based lidar simulator called the Automatic223

Lidar and Ceilometer Framework [ALCF; Kuma et al. (2021)]. We contrasted the results224

with ERA5 (ECMWF, 2019) and the Modern-Era Retrospective analysis for Research225

and Applications, Version 2 [MERRA-2; Gelaro et al. (2017)].226

2 Methods227

2.1 Voyage and Station Data228

Together, we analyzed data from 31 voyages of RV Polarstern, the resupply ves-229

sel (RSV) Aurora Australis, RV Tangaroa, RV Nathaniel B. Palmer, Her (now His) Majesty’s230

New Zealand Ship (HMNZS) Wellington and one sub-Antarctic station (Macquarie Is-231

land) in the SO south of 40°S between 2010 and 2021. Fig. 1 shows a map of the cam-232

paigns, Table 1 lists the campaigns, and Table 2 lists references where available. Alto-233

gether, the analyzed dataset comprised 2421 days of data south of 40°S, but the avail-234

ability of ceilometer data was slightly shorter due to gaps in measurements.235
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The campaigns contained ceilometer observations captured by the Vaisala CL51,236

CT25K, and the Lufft CHM 15k, described in detail below (Sections 2.2 and 2.3). A ceilome-237

ter is a low-power, near-infrared, vertically pointing lidar principally designed to mea-238

sure cloud base, but they also measure the full vertical structure of clouds as long as the239

laser signal is not attenuated by thick clouds, which can be used to infer additional in-240

formation such as a cloud mask and cloud occurrence by height. We note that during241

the MICRE campaign, the ceilometers Vaisala CT25K and CL51 were installed at the242

Macquarie Island station concurrently, but in our analysis we only used the CT25K data243

obtained from the Atmospheric Radiation Measurement (ARM) data archive.244

Apart from lidar observations, radiosondes were launched on weather balloons at245

regular synoptic times on the RV Polarstern, MARCUS, NBP17024, TAN1702, and TAN1802246

campaigns, measuring pressure, temperature, relative humidity, and the global naviga-247

tion satellite system coordinates. Derived thermodynamic (virtual potential tempera-248

ture, lifting condensation level, etc.) and dynamic physical quantities (wind speed and249

direction) for the measured vertical profiles were calculated with rstool (Kuma, 2024).250

(a)

(d)

(b)

(c)

(e)

Figure 1. (a) A map showing the tracks of 31 voyages of RV Polarstern, RSV Aurora Aus-

tralis, RV Tangaroa, RV Nathaniel B. Palmer, and HMNZS Wellington and one sub-Antarctic

station (Macquarie Island) analyzed here. The tracks cover Antarctic sectors south of South

America, the Atlantic Ocean, Africa, Australia, and New Zealand in the years 2010–2021 (inclu-

sive). The dotted and dashed lines at 40°S and 55°S delineate the Southern Ocean area of our

analysis and its partitioning into two subsets, respectively. A photo of (b) RV Polarstern (©
Folke Mehrtens, Alfred-Wegener-Institut), (c) Lufft CHM 15k installed on RV Tangaroa (©
Peter Kuma, University of Canterbury), (d) Vaisala CL51 (© Jeff Aquilina, Bureau of Meteo-

rology), (e) Vaisala CT25K at Macquarie Island (© Simon P. Alexander, Australian Antarctic

Division).
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Surface meteorological quantities were measured continuously by an onboard automatic251

weather station or individual instruments.252

2.2 Vaisala CL51 and CT25K253

The Vaisala CL51 and CT25K (photos in Fig. 1d, e) are ceilometers operating at254

near-infrared wavelengths of 910 nm and 905 nm, respectively. The CL51 can also be255

configured to emulate the Vaisala CL31. The maximum range is 15.4 km (CL51), 7.7 km256

(CL31 emulation mode with 5 m vertical resolution), and 7.5 km (CT25K). The verti-257

cal resolution is 10 m (5 m configurable) in CL51 and 30 m in CT25K observations. The258

sampling (temporal) resolution is configurable, and in our datasets, it is approximately259

6 s for CL51 on AA15-16, 16 s for CT25K on MARCUS and MICRE, 36 s for CL51 on260

RV Polarstern, and about 2.37 s for CL51 with CL31 emulation on TAN1502. The wave-261

lengths of 905 and 910 nm are both affected by water vapor absorption of about 20%262

in the mid-latitudes (Wiegner & Gasteiger, 2015; Wiegner et al., 2019), with 910 nm af-263

fected more strongly, but we do not expect this to be a significant issue as explained in264

Kuma et al. (2021). The instrument data files containing raw uncalibrated backscatter265

were first converted to Network Common Data Form (NetCDF) with cl2nc (https://266

github.com/peterkuma/cl2nc) and then processed with the ALCF (Section 2.4) to pro-267

duce absolutely calibrated attenuated volume backscattering coefficient (AVBC), cloud268

mask, cloud occurrence by height, and the total cloud fraction. Because the CT25K uses269

a very similar wavelength to CL51, equivalent calculations as for CL51 were done assum-270

ing a wavelength of 910 nm. The Vaisala CL51 and CT25K instruments were used on271

most of the voyages and stations analyzed here. Fig. 2a shows an example of AVBC de-272

rived from the CL51 instrument data.273

2.3 Lufft CHM 15k274

The Lufft CHM 15k (photo in Fig. 1c) ceilometer operates at a near-infrared wave-275

length of 1064 nm. The maximum range is 15.4 km; the vertical resolution is 5 m in the276

near range (up to 150 m) and 15 m above; the sampling (temporal) resolution is 2 s; and277

the number of vertical levels is 1024. NetCDF files containing uncalibrated backscatter278

produced by the instrument were processed with the ALCF (Section 2.4) to again pro-279

duce AVBC, cloud mask, cloud occurrence by height, and the total cloud fraction. The280

CHM 15k was used on four voyages (HMNZSW16, TAN1702, TAN1802, and NBP1704).281

2.4 ALCF282

The Automatic Lidar and Ceilometer Framework (ALCF) is a ground-based lidar283

simulator and a tool for processing observed lidar data, supporting various instruments284

and models (Kuma et al., 2021). It performs radiative transfer calculations to derive equiv-285

alent lidar AVBC from an atmospheric model, which can then be compared with observed286

AVBC. For this purpose, it takes the cloud fraction, liquid and ice mass mixing ratio,287

temperature, and pressure model fields as an input and is run offline (on the model out-288

put rather than inside the model code). The lidar simulator in the ALCF is based on289

the instrument simulator Cloud Feedback Model Intercomparison Project (CFMIP) Ob-290

servation Simulator Package (COSP) (Bodas-Salcedo et al., 2011). After AVBC is cal-291

culated, a cloud mask, cloud occurrence by height, and the total cloud fraction are de-292

termined. The ALCF has been used by several research teams for model and reanaly-293

sis evaluation (Kuma et al., 2020; Kremser et al., 2021; Guyot et al., 2022; Pei et al., 2023;294

Whitehead et al., 2023; McDonald, Kuma, et al., 2024).295

Absolute calibration of the observed backscatter was performed by comparing the296

measured clear-sky molecular backscatter statistically with simulated clear-sky molec-297

ular backscatter. AVBC was resampled to 5 min temporal resolution and 50 m vertical298

resolution to increase the signal-to-noise ratio while having enough resolution to detect299
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Table 1. An overview of the analyzed campaigns (voyages and stations). Start, end, and the

number of days (UTC; inclusive) refer to the time period when the vessel was south of 40°S.
Abbreviations: ceilometer (ceil.), Australia (AU), New Zealand (NZ), South America (SA),

Atlantic Ocean (AO), and Africa (AF). The number of days is rounded to the nearest integer.

CL51/31 indicates CL51 configured to emulate CL31. Missing days in the ceilometer data were

HMNZSW16 (7 days): 24–27 November, 10 December, 16–17 December 2016; MARCUS (3

days): 8, 10 November, 10 December 2017; MICRE (9 days): 7–8, 29 June, 5, 16 July, 15 August,

17 October 2016, 11 February, 21 March 2017; TAN1502 (1 day): 24 January.

Name Vessel or station Ceil. Region Start End Days

AA15-16 RSV Aurora Australis CL51 AU 2015-10-22 2016-02-22 124

HMNZSW16 HMNZS Wellington CHM 15k NZ 2016-11-23 2016-12-19 27

MARCUS RSV Aurora Australis CT25K AU 2017-10-29 2018-03-26 149

MICRE Macquarie Is. station CT25K AU/NZ 2016-04-03 2018-03-14 710

NBP1704 RV Nathaniel B. Palmer CHM 15k NZ 2017-04-14 2017-06-08 55

PS77/2 RV Polarstern CL51 SA/AO/AF 2010-12-01 2011-02-04 65

PS77/3 RV Polarstern CL51 SA/AO/AF 2011-02-07 2011-04-14 66

PS79/2 RV Polarstern CL51 SA/AO/AF 2011-12-06 2012-01-02 27

PS79/3 RV Polarstern CL51 SA/AO/AF 2012-01-10 2012-03-10 61

PS79/4 RV Polarstern CL51 SA/AO/AF 2012-03-14 2012-04-08 26

PS81/2 RV Polarstern CL51 SA/AO/AF 2012-12-02 2013-01-18 47

PS81/3 RV Polarstern CL51 SA/AO/AF 2013-01-22 2013-03-17 55

PS81/4 RV Polarstern CL51 SA/AO/AF 2013-03-18 2013-04-16 30

PS81/5 RV Polarstern CL51 SA/AO/AF 2013-04-20 2013-05-23 33

PS81/6 RV Polarstern CL51 SA/AO/AF 2013-06-10 2013-08-12 63

PS81/7 RV Polarstern CL51 SA/AO/AF 2013-08-15 2013-10-14 60

PS81/8 RV Polarstern CL51 SA/AO/AF 2013-11-12 2013-12-14 31

PS81/9 RV Polarstern CL51 SA/AO/AF 2013-12-21 2014-03-02 71

PS89 RV Polarstern CL51 SA/AO/AF 2014-12-05 2015-01-30 56

PS96 RV Polarstern CL51 SA/AO/AF 2015-12-08 2016-02-14 68

PS97 RV Polarstern CL51 SA/AO/AF 2016-02-15 2016-04-06 52

PS103 RV Polarstern CL51 SA/AO/AF 2016-12-18 2017-02-02 46

PS104 RV Polarstern CL51 SA/AO/AF 2017-02-08 2017-03-18 39

PS111 RV Polarstern CL51 SA/AO/AF 2018-01-21 2018-03-14 52

PS112 RV Polarstern CL51 SA/AO/AF 2018-03-18 2018-05-05 49

PS117 RV Polarstern CL51 SA/AO/AF 2018-12-18 2019-02-07 51

PS118 RV Polarstern CL51 SA/AO/AF 2019-02-18 2019-04-08 50

PS123 RV Polarstern CL51 SA/AO/AF 2021-01-10 2021-01-31 21

PS124 RV Polarstern CL51 SA/AO/AF 2021-02-03 2021-03-30 55

TAN1502 RV Tangaroa CL51/31 NZ 2015-01-20 2015-03-12 51

TAN1702 RV Tangaroa CHM 15k NZ 2017-03-09 2017-03-31 23

TAN1802 RV Tangaroa CHM 15k NZ 2018-02-07 2018-03-20 41

Total 2421
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Table 2. Campaign publication references.

Name References

AA15-16 Klekociuk et al. (2020)

MARCUS McFarquhar et al. (2021); Xia and McFarquhar (2024); Niu et al. (2024)

MICRE McFarquhar et al. (2021)

NBP1704 Ackley et al. (2020)

PS77/2 König-Langlo (2011e, 2011a, 2011c, 2014h); Fahrbach and Rohardt (2011)

PS77/3 König-Langlo (2011d, 2011b, 2012g, 2014i); Knust and Rohardt (2011)

PS79/2 König-Langlo (2012h, 2012d, 2012a, 2014j); Kattner and Rohardt (2012)

PS79/3 König-Langlo (2012i, 2012b, 2012e, 2014k); Wolf-Gladrow and Rohardt (2012)

PS79/4 König-Langlo (2012j, 2012c, 2012f, 2014l); Lucassen and Rohardt (2012)

PS81/2 König-Langlo (2013l, 2013a, 2013f, 2014a); Boebel and Rohardt (2013)

PS81/3 König-Langlo (2013m, 2013g, 2013b, 2014b); Gutt and Rohardt (2013)

PS81/4 König-Langlo (2013n, 2013c, 2013h, 2014c); Bohrmann and Rohardt (2013)

PS81/5 König-Langlo (2013o, 2013d, 2013i, 2014d); Jokat and Rohardt (2013)

PS81/6 König-Langlo (2013p, 2013e, 2013j, 2014e); Lemke and Rohardt (2013)

PS81/7 König-Langlo (2013q, 2013k, 2014f, 2016c); Meyer and Rohardt (2013)

PS81/8 König-Langlo (2013r, 2014g, 2014n, 2014p); Schlindwein and Rohardt (2014)

PS81/9 König-Langlo (2014r, 2014m, 2014o, 2014q); Knust and Rohardt (2014)

PS89 König-Langlo (2015a, 2015d, 2015b, 2015c); Boebel and Rohardt (2016)

PS96 König-Langlo (2016h, 2016a, 2016d, 2016f); Schröder and Rohardt (2017)

PS97 König-Langlo (2016i, 2016e, 2016b, 2016g); Lamy and Rohardt (2017)

PS103 König-Langlo (2017f, 2017d, 2017a, 2017c); Boebel and Rohardt (2018)

PS104 König-Langlo (2017e, 2017g, 2017b); Gohl and Rohardt (2018); Schmithüsen (2021g)

PS111 Schmithüsen (2019a, 2020a, 2021h, 2021a); Schröder and Rohardt (2018)

PS112 Schmithüsen (2019b, 2020b, 2021b, 2021i); Meyer and Rohardt (2018)

PS117 Schmithüsen (2019c, 2020c, 2021j, 2021c); Boebel and Rohardt (2019)

PS118 Schmithüsen (2019d, 2020d, 2021d, 2021k); Dorschel and Rohardt (2019)

PS123 Schmithüsen (2021m, 2021e, 2021l); Schmithüsen, Jens, and Wenzel (2021); Hoppmann, Tippen-

hauer, and Heitland (2023)

PS124 Schmithüsen (2021n, 2021f); Schmithüsen, Rohleder, et al. (2021); Hoppmann, Tippenhauer, and

Hellmer (2023)

TAN1802 Kremser et al. (2020, 2021)

small-scale cloud variability. The noise standard deviation was calculated from AVBC300

at the highest range, where no clouds are expected. A cloud mask was calculated from301

AVBC using a fixed threshold of 2× 10−6m−1sr−1 after subtracting 5 standard devia-302

tions of range-scaled noise. Fig. 2b shows an example of simulated Vaisala CL51 backscat-303

ter from ERA5 data, corresponding to a day of measurements by the instrument on the304

PS81/3 voyage.305

2.5 ICON306

A coupled (atmosphere–ocean) GSRM version of the ICON model is in develop-307

ment as part of the nextGEMS project (Hohenegger et al., 2023). ICON is an exception-308

ally versatile model, allowing for simulations ranging from coarse-resolution ESM sim-309
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ulations, GSRM simulations, limited area model simulations, to large eddy simulations310

(LES), for both weather prediction and climate projections. ICON uses the atmospheric311

component ICON-A (Giorgetta et al., 2018), whose physics is derived from ECHAM6312

(Stevens et al., 2013), and the ocean component ICON-O (Korn et al., 2022). Earlier runs313

of the GSRM ICON from DYAMOND were evaluated by Mauritsen et al. (2022).314

Here, we use a free-running (i.e., the weather situation in the model does not cor-315

respond to reality) coupled GSRM simulation made for the purpose of climate projec-316

tion. nextGEMS has so far produced four cycles of model runs. We used a Cycle 3 run317

ngc3028 produced in 2023 (Koldunov et al., 2023; nextGEMS authors team, 2023) for318

a model time period of 20 January 2020 to 22 July 2025, of which we analyzed the pe-319

riod 2021–2024 (inclusive). The horizontal resolution of ngc3028 is about 5 km. The model320

output is available on 90 vertical levels and 3-hourly instantaneous temporal resolution.321

Unlike current general circulation models (GCMs), the storm-resolving version of322

ICON does not use convective and cloud parameterization but relies on explicit simu-323

lation of convection and clouds on the model grid. Subgrid-scale clouds are not resolved,324

and the grid cell cloud fraction is always either 0 or 100%. While this makes the code325

development simpler without having to rely on uncertain parameterizations, it can miss326

smaller-scale clouds below the grid resolution. Turbulence and cloud microphysics are327

still parameterized in this model, and aerosols are taken from a climatology. To account328

for the radiative effects of subgrid-scale clouds, a cloud inhomogeneity factor is introduced329

in the model, which scales down the cloud liquid water for radiative calculations. It ranges330

from 0.4 at lower tropospheric stability (LTS) of 0 K to 0.8 at 30 K. In addition, ver-331

Figure 2. An example of the attenuated volume backscattering coefficient (AVBC) (a) mea-

sured by the CL51 during 24 hours on the PS81/3 voyage and (b) an equivalent AVBC simulated

with the ALCF from ERA5 data during the same time period. The red line identifies the cloud

mask determined by the ALCF.
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tical mixing is enhanced in unstable and humid lower-tropospheric conditions, which re-332

duces the amount of shallow clouds.333

Because the analyzed ICON simulation was free-running (years 2021–2024, inclu-334

sive), weather and climate oscillations (such as the El Niño–Southern Oscillation) are335

not expected to be equivalent to reality at the same time and place. To compare with336

the observations collected during a different time period (years 2010–2021, inclusive), we337

compared the model output with observations at the same time of year and geograph-338

ical location, as determined for each data point, such as a lidar profile or a radiosonde339

launch. In the ALCF, this was done using the override year option (https://alcf.peterkuma340

.net/documentation/cli/cmd model.html). For radiosonde profiles, the same map-341

ping of time from was done. That is, when selecting an equivalent profile from the model,342

the time of the profile was changed so that the time relative to the start of the year was343

preserved, but the year was changed to one of the four years available in the model data.344

Thus, for every radiosonde launch, there were four equivalent model profiles. The geo-345

graphical location was kept the same. We discuss briefly the implications of comparing346

the observations with a free-running model in Section 4.347

2.6 MERRA-2348

The Modern-Era Retrospective analysis for Research and Applications, Version 2349

(MERRA-2) is a reanalysis produced by the Global Modeling and Assimilation Office350

at the NASA Goddard Space Flight Center (Gelaro et al., 2017). It uses version 5.12.4351

of the Goddard Earth Observing System (GEOS) atmospheric model (Rienecker et al.,352

2008; Molod et al., 2015). Non-convective clouds (condensation, autoconversion, and evap-353

oration) are parameterized using a prognostic scheme (Bacmeister et al., 2006), and sub-354

grid cloud fraction is determined using total water distribution and a critical relative hu-355

midity threshold. The reanalysis output analyzed here is available at a spatial resolu-356

tion of 0.5° of latitude and 0.625° of longitude, which is about 56 km in the North–South357

direction and 35 km in the East–West direction at 60°S. The number of vertical model358

levels is 72. Here, we use the following products: 1-hourly instantaneous 2D single-level359

diagnostics (M2I1NXASM) for 2-m temperature and humidity; 3-hourly instantaneous360

3D assimilated meteorological fields (M2I3NVASM) for cloud quantities, pressure, and361

temperature; 1-hourly average 2D surface flux diagnostics (M2T1NXFLX) for precip-362

itation; and 1-hourly average 2D radiation diagnostics (M2T1NXRAD) for radiation quan-363

tities (Bosilovich et al., 2016).364

2.7 ERA5365

ERA5 (ECMWF, 2019) is a reanalysis produced by the ECMWF. It is based on366

a numerical weather prediction model IFS version CY41R2. It uses the Tiedtke (1993)367

prognostic cloud scheme and Forbes and Ahlgrimm (2014) for mixed-phase clouds. The368

horizontal resolution is 0.25° in latitude and longitude, which is about 28 km in the North–369

South direction and 14 km in the East–West direction at 60°S. Internally, the model uses370

137 vertical levels. Here, we use output at 1-hourly instantaneous time intervals, except371

for radiation quantities, which are accumulations (from these we calculate daily means).372

Vertically resolved quantities are made available on 37 pressure levels.373

2.8 CERES374

TOA radiation quantities are taken from the CERES instruments onboard the Terra375

and Aqua satellites (Wielicki et al., 1996; Loeb et al., 2018). In our analysis, we used376

the adjusted all-sky SW and LW upwelling fluxes at TOA from the synoptic TOA and377

surface fluxes and clouds 1-degree daily edition 4A product (CER SYN1deg-Day Terra-378

Aqua-MODIS Edition4A) (Doelling et al., 2013, 2016).379

–11–



manuscript submitted to JGR: Atmospheres

Radiation calculations presented in the results (Section 3) were completed such that380

they always represent daily means in order to be consistent with the CERES SYN1deg381

data. Therefore, every instantaneous profile in the simulated lidar data was assigned a382

daily mean radiation value corresponding to the day (in the Coordinated Universal Time;383

UTC). In turn, the average radiation during the entire voyage or station observation pe-384

riod was calculated as the average of the profile values. In the observed lidar data, the385

daily mean radiation value was taken from the spatially and temporally co-located CERES386

SYN1deg data for the day (in UTC). The voyage or station average was calculated in387

the same way.388

Convolution 2D (64, 3 × 3) Maximum pooling 2D (2 × 2) Convolution 2D (128, 3 × 3) Maximum pooling 2D (2 × 2)Input (16 × 24 × 1)

Convolution 2D (256, 3 × 3) Maximum pooling 2D (1 × 2) Dropout (20%) Dense (64) Dense (4)Flatten Output (4)

(a) ANN diagram

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0‒250 m (vertical axis)

(c) Receiver operating characteristic (d) Measured and predicted precipitation time series
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Figure 3. Artificial neural network (ANN) for prediction of precipitation in lidar backscat-

ter. (a) Diagram showing the TensorFlow structure of the ANN, (b) randomly selected example

samples of near-surface backscatter in four categories (clear, fog, rain, and snow), as determined

by coincident manual weather observations, (c) receiver operating characteristic diagram of the

ANN, (d) examples of 10-day time series of human-observed (“HUM”) and predicted precipi-

tation based on an ANN trained on all voyages (“ANN”) and all voyages except for the shown

voyage (“ANN2”) during three randomly selected voyages with the available data. Here, by “ran-

domly selected,” we mean selected from the top of a permutation generated by a pseudo-random

number generator to prevent authors’ bias in the selection.

–12–



manuscript submitted to JGR: Atmospheres

2.9 Precipitation Identification Using Machine Learning389

Precipitation can cause strong enough lidar backscattering to be recognized as clouds390

by the threshold-based cloud detection method used in the ALCF. This is undesirable391

if equivalent precipitation backscatter is not included in the simulated lidar profiles. It392

was not possible to include precipitation simulation in the ALCF due to the absence of393

required fields in the ICON model output and the reanalysis data (the liquid and ice pre-394

cipitation mass mixing ratios). The required radiation calculations for precipitation are395

also currently not implemented in the ALCF, even though this is a planned future ad-396

dition. In order to achieve a fair comparison of observations with model output, we ex-397

clude observed and simulated lidar profiles with precipitation, either manually or using398

an automated method. It is relatively difficult to distinguish precipitation backscatter399

from cloud backscatter in lidar observations, especially when only one wavelength chan-400

nel and no polarized channel are available. In models, the same can be accomplished rel-401

atively easily by excluding profiles exceeding a certain surface precipitation flux. In the402

observations, using precipitation flux measurements from rain gauges can be very un-403

reliable on ships due to ship movement, turbulence caused by nearby ship structures, and404

sea spray. Our analysis of rain gauge data from the RV Tangaroa showed large discrep-405

ancies between the rain gauge time series and human-performed synoptic observations,406

as well as large inconsistencies in the rain gauge time series. Human-performed obser-407

vations of precipitation presence or absence are expected to be reliable but only cover408

a limited set of times. Therefore, it was desirable to implement a method of detecting409

precipitation from observed backscatter profiles alone.410

On the RV Polarstern voyages, regular manual synoptic observations were avail-411

able and included precipitation presence or absence and type. We used this dataset to412

train a convolutional artificial neural network (ANN) to recognize profiles with precip-413

itation from lidar backscatter data (Fig. 3a), implemented in the TensorFlow ANN frame-414

work (Abadi et al., 2015). Samples of short time intervals (10 min) of near-surface li-415

dar backscatter (0–250 m) were classified as clear, rain, snow, and fog, using the synop-416

tic observations as a training dataset (Fig. 3b). From these, a binary, mutually exclu-417

sive classification of profiles as precipitating (rain or snow) or dry (clear or fog) was de-418

rived. For detecting model and reanalysis precipitation, we used a fixed threshold for sur-419

face precipitation flux of 0.1 mm h−1 (the ANN was not used).420

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate421

(26%) was made to match observations. The receiver operating characteristic curve is422

shown in Fig. 3c. We considered these rates satisfactory for the purpose of filtering pre-423

cipitation profiles. Fig. 3d shows examples of the predicted precipitation compared to424

human-performed observations. The main ANN (‘ANN‘ in Fig. 3) was trained on all data,425

and ancillary ANNs (‘ANN2‘ in Fig. 3) were trained with portions of voyage data ex-426

cluded to test the results for each voyage.427

2.10 Partitioning by Cyclonic Activity and Stability428

We partitioned our data into two mutually exclusive subsets by cyclonic activity.429

For this purpose, we used a cyclone tracking algorithm to identify extratropical and po-430

lar cyclones (ECs and PCs) over the SO in the reanalysis and ICON data. We used the431

open-source cyclone tracking package CyTRACK (Pérez-Alarcón et al., 2024). Gener-432

ally, what constitutes an EC is considered relatively arbitrary due to the very large vari-433

ability of ECs (Neu et al., 2013). The CyTRACK algorithm uses mean sea level pres-434

sure and wind speed thresholds as well as tracking across time steps to identify cyclone435

centers and radii in each time step. With this information, we could classify geograph-436

ical areas as either cyclonic or non-cyclonic. Due to a relatively small total area covered437

by cyclones (as identified by the cyclone center and radius), we chose a circle of double438

the radius (relative to one identified by CyTRACK) centered at the cyclone center as439
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a cyclonic area for every time step and cyclone. All other areas were identified as non-440

cyclonic. For identifying cyclones in the observations and the reanalyses, ERA5 pressure441

and wind fields were used as the input to CyTRACK. This is justified by the fact that442

the large-scale pressure and wind fields in ERA5 are likely sufficiently close to reality.443

McErlich et al. (2023) have shown that wind is simulated well in ERA5 relative to the444

WindSat polarimetric microwave radiometer measurements (Meissner & Wentz, 2009).445

For identifying cyclones in ICON, its own pressure and wind fields were used as the in-446

put to CyTRACK, because the model is free-running, and thus the pressure and wind447

fields are different from reality. Subsetting by proximity to cyclones is a relatively crude448

measure because it does not take into account the different sectors of cyclones, which are449

commonly associated with different weather situations. However, this was a choice made450

for simplicity of the analysis, given the quantity of data.451

In addition to the above, we partitioned our data into two mutually exclusive sub-452

sets based on LTS, which is derived as the difference between the potential temperature453

at 700 hPa and the surface. Based on a histogram of LTS in ERA5 and MERRA-2 cal-454

culated at all voyage tracks and stations (Fig. 4), we determined a statistically-based di-455

viding threshold of 12 K for weak stability (< 12 K) and strong stability (≥ 12 K) con-456

ditions.457

3 Results458

3.1 Cyclonic Activity and Stability459

Fig. 5a, b show the geographical distribution of the fraction of cyclonic days as de-460

termined by the cyclone tracking algorithm applied to the ERA5 reanalysis and ICON461

data (Section 2.10). As expected, the strongest cyclonic activity is in the high-latitude462

SO zone and is relatively zonally symmetric at all latitudes. The pattern matches rea-463

sonably well with Hoskins and Hodges (2005). While both reanalysis and the model agree464

within about 8% in most areas, ICON is prevailingly more cyclonic by about 4%. There465

are clear differences, particularly in the highest occurrence rate regions, such as around466

Cape Adare, which is up to 20% more cyclonic in ICON, and the Weddell and Belling-467

shausen Seas, where ICON is less cyclonic by up to 10%. These differences might, how-468
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Figure 4. Lower tropospheric stability (LTS) distribution in (a) ERA5 and (b) MERRA-2

calculated for the 31 voyage tracks and one station from the highest instantaneous temporal reso-

lution data available. Shown is also the chosen dividing threshold of 12 K for conditions of weak

and strong stability.
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Figure 5. Geographical distribution of (a, b) cyclonic days and (b, d) strong stability

(LTS ≥ 12 K) time steps in (a, c) ERA5 in years 2010–2013 (inclusive) and (b, d) ICON in

model years 2021–2023 (free running). Cyclonic days are expressed as a fraction of the number of

days with cyclonic activity, defined as grid points located within a double radius of any cyclone

on a given day (UTC), as identified by CyTRACK.
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ever, stem from the relatively short time periods of comparison (4 years) and the fact469

that the model is free-running.470

Fig. 5c, d show the geographical distribution of the conditions of weak and strong471

stability as determined by the LTS (Section 2.10). Conditions of weak stability are preva-472

lent in the mid-to-high SO (with respect to our SO partitioning; 50–65°S), which might473

be explained by the relatively cold near-surface air overlying the relatively warm sea sur-474

face. Conditions of strong stability are prevalent elsewhere over the SO. The distribu-475

tion is also less zonally symmetric than the cyclonic activity. In the high-latitude SO,476

the presence of sea ice might have a substantial stabilizing effect (Knight et al., 2024).477

The ERA5 reanalysis is also substantially more stable than ICON across the whole re-478

gion.479

3.2 Cloud Occurrence by Height480

We used the ALCF to derive cloud occurrence by height and the total cloud frac-481

tion from observations, ICON, ERA5, and MERRA-2. The results for all campaigns in-482

dividually are shown in Fig. 6. In addition, we aggregated the campaigns by calculat-483

ing the averages and percentiles of all individual profiles, presented in Fig. 7. The anal-484

ysis shows that the total cloud fraction (defined as the fraction of profiles with clouds485

at any height in the lidar cloud mask) is underestimated in ICON by about 10% and in486

the reanalyses by about 20%. When analyzed by height, ICON overestimates cloud oc-487

currence below 1 km and underestimates it above; MERRA-2 underestimates cloud oc-488

currence at all heights by up to 10%, especially near the surface; and ERA5 simulates489

cloud occurrence relatively well above 1 km but strongly underestimates it near the sur-490

face. We note that fog or near-surface clouds are strongly underestimated in the reanal-491

yses (fog and clouds are both included in the cloud occurrence). As shown in Fig. 6, the492

biases are relatively consistent across the campaigns and longitudes. We conclude that493

the ICON results match the observations better than the reanalyses in this metric.494

For all observations considered (Fig. 7a), the data show cloud occurrence peaking495

nearly at the surface, whereas the models show a higher peak (at about 500 m). The mod-496

els generally underestimate the total cloud fraction by 10–20% and show a strong reduc-497

tion in cloud occurrence near the surface, which is not identified in the observations. ICON498

and ERA5 overestimate cloud occurrence at their peak (between 0 and 1 km). Above499

1 km, ICON and MERRA-2 underestimate cloud occurrence, but ERA5 is accurate to500

about 3% or less. The exaggerated peak in models is partly explained by the lifting con-501

densation level (LCL) distribution, which peaks about 200 m higher in the models than502

in the observations (nearly at the surface), although this is not very pronounced. This503

is indicative of near-surface relative humidity being often close to saturation in the ob-504

servations but not in the models.505

When subsetted by latitude (Fig. 7b, c), we see that the low-latitude SO zone dis-506

plays a stronger peak of cloud occurrence near the surface than the high-latitude SO zone,507

and this could be because higher latitudes have less stable atmospheric profiles. The low-508

and high-latitude SO zones show similar biases in models as in the general case, but ERA5509

does not overestimate the peak in the low-latitude SO zone (near-surface cloud occur-510

rence is still strongly underestimated).511

When subsetted by cyclonic and non-cyclonic situations (Fig. 7d, e), we see that512

the cyclonic situations have a larger amount of observed cloudiness, including peak and513

total cloud fraction, both by about 7%. In the cyclonic situations, the model vertical pro-514

files of cloud occurrence compare well with observations, but they peak higher by about515

200 m and larger by about 8%. The reanalyses still tend to underestimate cloud occur-516

rence above 1 km by about 5% and near the surface by about 14%. Non-cyclonic situ-517

ations are similar to the general case, partially also because they form the majority of518

cases.519
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Figure 6. Cloud occurrence by height for the 31 voyages and one sub-Antarctic station (MI-

CRE) in observations (O) and simulated by the ALCF from the ICON model (I), MERRA-2

(M), and ERA5 reanalysis data (E). The numbers in the legend indicate the total cloud fraction

and the number of days of data. Multiple lines of ICON profiles are for each of the four years of

model data available.
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When subsetted by conditions of weak and strong stability (Fig. 7f, g), as defined520

in Section 2.10, we see that in situations of strong stability, cloud occurrence peaks strongly521

near the surface in observations, compared to situations of weak stability, where the peak522

is more diffuse between 0 and 1 km. It is worth mentioning that conditions of strong sta-523

bility might be associated with the formation of advection fog, such as in situations of524

warm air advection from the north over a colder sea surface, thus inducing fog forma-525

tion by cooling of the warm and humid air by the cold surface. In situations of strong526

stability, the models have smaller biases than in weak stability, with an overestimated527

peak by up to 12%, underestimated cloud occurrence above 1 km by up to 5%, and un-528

derestimated cloud occurrence near the surface by about 11%. In situations of weak sta-529

bility, the bias in ICON is very pronounced, with a much larger peak in cloud occurrence530

at about 500 m; ERA5 underestimates cloud occurrence below 1 km (especially near the531

surface); and MERRA-2 underestimates cloud occurrence even more strongly.532

In all situations, even when the models overestimate cloud occurrence at some al-533

titudes, they always substantially underestimate the total cloud fraction. ICON can be534

generally characterized as substantially overestimating cloud occurrence below 1 km and535

underestimating above, underestimating the total cloud fraction, and showing the great-536

est biases in conditions of weak stability and non-cyclonic conditions. ICON also has a537

peak cloud occurrence at higher altitudes than observations (500 m vs. near the surface),538

and correspondingly, its LCL tends to be higher. MERRA-2 can be generally charac-539

terized as underestimating cloud occurrence at nearly all altitudes as well as the total540

cloud fraction, but mostly above and below 500 m (the peak at 500 m is well represented).541

MERRA-2 displays the largest errors relative to observations in the low-latitude SO zone542

and in situations of weak stability. ERA5 can be generally characterized as represent-543

ing cloud occurrence correctly above about 1.5 km, overestimating between 500 m and544

1 km, but underestimating near-surface cloud occurrence (0–500 m). The total cloud frac-545

tion is strongly underestimated in all situations. ERA5 has a tendency towards under-546

estimation in the low-latitude SO zone and situations of weak stability; conversely, it over-547

estimates in the high-latitude SO zone and conditions of strong stability.548

3.3 Top of Atmosphere Radiation549

In Fig. 7, we also display the mean outgoing shortwave and longwave top-of-atmosphere550

radiation, whose calculation is described in Section 2.8. In observations, these come from551

daily mean CERES measurements averaged over the voyage tracks or a station location,552

whereas in the models they come from daily means of TOA radiation in the model out-553

put averaged over the same location and time periods. In the free-running ICON model,554

the time period is mapped onto the available years, as explained in Section 2.5.555

In the general case (Fig. 7a), ICON underestimates the outgoing SW radiation by556

26 Wm−2, and the MERRA-2 and ERA5 reanalyses overestimate it by 6 and 14 Wm−2,557

respectively. While in ICON, this is in line with the underestimated total cloud fraction558

of 10%, in the reanalyses this is the opposite result to that expected from the underes-559

timated total cloud fraction of about 20%. The likely explanation is an overestimated560

cloud albedo, compensating for the lack of cloud area.561

We note that the radiative transfer calculations used in the lidar simulator mean562

that the impact of both cloud phase and cloud fraction are convolved to produce the cloud563

mask. Therefore, the cloud occurrence is not affected by any cloud phase biases as long564

as the cloud is optically thick enough to be detected, and the laser signal is not too at-565

tenuated. However, a combination of underestimated total cloud fraction and overesti-566

mated outgoing SW at TOA is indicative of an overestimated cloud albedo due to either567

cloud liquid and ice water content, cloud phase, droplet or ice crystal size distribution,568

shape or orientation of ice crystals, or cloud overlap.569
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Figure 7. Cloud occurrence by height calculated as the average of all voyages and stations

and lifting condensation level (LCL) distribution. The LCL is derived from radiosonde profiles

and equivalent model profiles, which were not available for all voyages and times. The total cloud

fraction (CF), average shortwave (SW), and longwave (LW) and the relative frequency of occur-

rence (RFO) are shown. The bands are the 16th–84th percentile, calculated from the set of all

voyages and stations.
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In contrast, LW radiation has much smaller biases than SW radiation, which is ex-570

pected due to the prevailing low-level clouds having similar temperature as the surface.571

In ICON, the outgoing LW radiation is overestimated by 8%, which could be caused by572

an underestimated total cloud fraction exposing a larger sea surface area to cooling to573

space, which is typically warmer than the atmospheric temperature at 0–2 km, where574

most of the clouds are located. In the MERRA-2 and ERA5 reanalyses, the LW biases575

are also slightly positive, 4 and 7 Wm−2, respectively. This is again in line with the un-576

derestimated total cloud fraction by about 20%. However, if the clouds are too thick,577

as expected from the SW results, this might also provide a compensating effect, in which578

too small a cloud area is counteracted by greater thermal emissivity, thus reducing the579

outgoing LW radiation more relative to thinner clouds. For thin clouds, the outgoing TOA580

LW radiation originates both from the warmer surface (partly blocked by the clouds) and581

the clouds, whereas for thick clouds, the outgoing TOA LW radiation originates mostly582

from the colder-than-surface clouds.583

In all the subsets (Fig. 7b–g), the same type of biases are observed, namely the out-584

going SW radiation is underestimated in ICON and overestimated in MERRA-2 and ERA5,585

and the outgoing LW radiation is overestimated in all the models. Even though the to-586

tal cloud fraction is lower by 7% over the high-latitude SO than the low-latitude SO, the587

outgoing SW radiation is much greater by 41 Wm−2, implying a much greater cloud albedo588

over the high-latitude SO. The ICON model output displays the same contrast between589

these two regions in the total cloud fraction and SW radiation, but the outgoing SW ra-590

diation difference between the regions is much smaller (16 Wm−2). The reanalyses do591

not show this type of contrast between the regions. The physical reason for this might592

be that the prevalence of fog or low-level clouds over the low-latitude SO and their rel-593

ative lack over the high-latitude SO in observations is not reproduced in the models (Fig. 7b–594

c).595

3.4 Cloud Cover596

We also analyzed the daily cloud cover (total cloud fraction) distribution. This is597

a measure of cloudiness, irrespective of height, calculated over the course of a day (UTC).598

A cloud detected at any height means that the lidar profile was classified as cloudy; oth-599

erwise, it was classified as a clear sky. When all profiles in a day are taken together, the600

cloud cover for the day is defined as the fraction of cloudy profiles in the total number601

of profiles, expressed in oktas (multiples of 1/8). The same calculation is done for the602

lidar observations as for the simulated lidar profiles. We use the term “okta” indepen-603

dently of its use in instantaneous synoptic observations, and here it simply means 1/8604

(0.125%) of the daily cloud cover.605

In Fig. 8 we show the results for the same subsets of data as in Section 3.2. Ob-606

servations display the highest proportion of high cloud cover values (5–8 oktas), peak-607

ing at 7 oktas. This pattern is not represented by ICON or either reanalysis. While ICON608

is closest to matching the observed distribution, it tends to be 1 okta clearer than the609

observations, peaking at 6 oktas, and substantially underestimating days with 8 oktas.610

Overall, the reanalyses show results similar to each other, underestimating cloud cover611

by about 2 oktas and strongly underestimating days with 7 and 8 oktas. Of the two re-612

analyses, MERRA-2 has slightly higher cloud cover than ERA5, by about 6% at 6 oc-613

tas, which makes it more consistent with observations.614

When analyzed by subsets, observations in the cyclonic subset show the highest615

cloud cover, with 8 oktas occurring on one half of such days (Fig. 8d). This sensitivity616

to cyclonic conditions is not observed in ICON or the reanalyses. Interestingly, clear sky617

days (0 oktas) also have a local maximum peaking at about 15% in this subset. When618

we contrast the low- and high-latitude zones, we see that the high-latitude zone tends619

to have greater cloud cover, peaking at 8 oktas (Fig. 8c). The high-latitude zone also has620
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almost no clear sky or small cloud cover cases (0–4 oktas). ICON and the reanalyses rep-621

resent this characteristic of the distribution well for 0–3 oktas, but otherwise show bi-622

ases similar to the general case. One of the greatest biases is present in ERA5 in the sub-623

set of weak stability, in which ERA5 peaks at 3 oktas, while the observations peak at624

7 oktas and show negligible cloud cover below 5 oktas.625

3.5 Thermodynamic Profiles626

In order to examine the potential link in the cloud biases to the local physical con-627

ditions, we analyzed about 2300 radiosonde profiles south of 40°S from the 24 RV Po-628

larstern voyages, MARCUS, NBP1704, TAN1702, and TAN1802. Spatially and tempo-629

rally colocated profiles were taken from ICON and the reanalyses. Because the time pe-630

riod covered by the ICON model output (2021–2024) was different from the time period631

covered by the observations (2010–2021), when comparing with the model, we first had632

to remap the observation time to model time by taking the same time relative to the start633

of the year. Consequently, we also had four virtual/model profiles (one for each year of634

2021–2024) for each observed profile. The profiles were partitioned into the same sub-635

sets as above (Sections 3.2 and 3.4). We focus on comparing virtual potential temper-636

ature (θv) due to its role in low-level tropospheric stability, being one of the primary fac-637

tors affecting shallow convection and the associated low-level cloud formation and dis-638

sipation. The observed and model profiles of virtual potential temperature are shown639

in Fig. 9.640

Overall, the mean θv is accurate to within 0.5 K in ICON and MERRA-2, except641

for ICON being colder by up to 2.5 K in the mid-to-high troposphere (less stable) (Fig. 9a).642

Larger differences exist, however, in the 40–55°S zone, where ICON is colder by about643

5 K at higher altitudes (Fig. 9b). In other subsets, the bias is relatively small. MERRA-644

2 and ERA5 are very close to the observations, possibly due to a high accuracy of as-645

similation of this quantity. Notably, the variability of virtual potential temperature (as646

represented by the percentiles) is much smaller in ICON than in the observations. This647

indicates that the model’s internal variability in the lower-tropospheric thermodynamic648

conditions in the SO is smaller than in reality.649

Relative humidity displays much larger biases. In all subsets, ICON is too humid650

in the first 1 km by about 5% but very accurate above, except for the 40–55°S zone and651

conditions of weak stability (Fig. 9b, g), where it is too dry between about 1 and 3 km.652

MERRA-2, on the other hand, is more humid than observations at all altitudes and in653

all subsets, by up to about 20% at 5 km. Even though the mean near-surface relative654

humidity is similar to the observations (Fig. 9), the distribution in observation is more655

spread out across both high and low values, and thus observations have a greater preva-656

lence of relative humidity close to 100% and thus LCL located at the surface (Fig. 7a).657

In our calculations, LCL is an exclusive function of near-surface temperature, near-surface658

relative humidity, and surface pressure.659

4 Limitations of this Study660

Let us consider the main limitations of the presented results. The spatial cover-661

age of our dataset does not include most parts of the Indian Ocean and Pacific Ocean662

sectors of the SO. Even though climatological features of the SO are typically relatively663

uniform zonally, variations exist, such as those related to the Antarctic Peninsula and664

the southern tip of South America. The voyages were mostly undertaken in the Austral665

summer months and only rarely in the winter months, due to the poor accessibility of666

this region during winter. Therefore, our results are likely representative of summer and,667

to a lesser extent, spring and autumn conditions.668
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Figure 8. Daily total cloud fraction histograms calculated as the average of all voyage and

station histograms. The total cloud fraction of a day (UTC) is calculated as a fraction of cloudy

(based on the cloud mask) observed (OBS) or simulated lidar profiles. The models and subsets

are as in Fig. 7.
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Figure 9. Virtual potential temperature (virt. pot. temp.; θv) and relative humidity (RH)

determined from radiosonde launches and co-located profiles in ICON, ERA5, and MERRA-

2 in subsets as in Fig. 7. The solid lines are the average calculated from the averages of every

individual voyage and station. The bands span the 16th–84th percentiles, calculated from the dis-

tribution of the voyage and station averages. Shown is also the relative frequency of occurrence

and the number of profiles in each subset.
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The time period of ICON is relatively short, with only four full years of simulation669

available. Moreover, the simulation is free-running and ocean-coupled, which means that670

observations had to be temporally mapped to this time period (at the same time rela-671

tive to the start of the year) for the comparison. For these reasons, one can expect the672

results to be slightly different due to reasons unrelated to model biases, such as differ-673

ent weather conditions, partially accounted for by the cyclone and stability subsetting,674

and the phase of climate oscillations such as the ENSO in the observations and the model.675

The interannual variability in cloud occurrence in ICON can be seen in Fig. 6, where each676

year in ICON is represented by a separate line. The interannual variability tends to be677

substantially smaller than the biases and thus is unlikely to have a strong impact on the678

main findings.679

Ground-based lidar observations are affected by attenuation by thick cloud layers,680

and for this reason the results are most representative of boundary layer clouds, while681

higher-level clouds are only occasionally visible to the lidar when boundary layer clouds682

are not present. Ground-based lidar observations can be regarded as superior to satel-683

lite lidar observations for low-level clouds, which are predominant in this region, while684

mid- and high-level clouds are likely better sampled by satellite observations (McErlich685

et al., 2021). Near-surface lidar retrievals (∼100 m) are affected by uncertainties related686

to incomplete overlap, signal saturation (dead time), and after-pulse effect corrections687

(Kuma et al., 2021).688

We have attempted to remove lidar profiles with precipitation, which could not be689

properly simulated with the lidar simulator (Section 2.9). However, the approach was690

limited by the relatively low sensitivity of the ANN (65%) and the fact that we had to691

choose a fixed threshold for surface precipitation flux in the model and reanalyses, which692

might not correspond to detection by the ANN applied to observations. We also made693

no attempt to remove profiles with precipitation that did not reach the surface. The above694

reasons may result in an artificial bias in the comparison, though we expect this to be695

much smaller than the identified model biases.696

5 Discussion and Conclusions697

We analyzed a total of about 2400 days of lidar and 2300 radiosonde observations698

from 31 voyages/campaigns and the Macquarie Island subantarctic station, covering the699

Atlantic, Australian, and New Zealand sectors of the SO over the span of 10 years. This700

dataset, together with the use of a ground-based lidar simulator, provided a comprehen-701

sive basis for evaluating SO cloud and thermodynamic profile biases in the GSRM ICON702

and the ERA5 and MERRA-2 reanalyses. Our analysis provides a unique evaluation per-703

spective different from satellite observations – one that we argue is more suitable for eval-704

uating boundary layer clouds, which are predominant in this region. Furthermore, we705

subsetted our dataset by low and high latitude bands, cyclonic activity, and stability in706

order to identify how these conditions influence the biases.707

Our main finding corroborates previous findings of large boundary layer cloud bi-708

ases in models and their subsequent effect on the radiative transfer. For example, low-709

and mid-level clouds in the cold-air sector of cyclones were identified as being respon-710

sible for most of the SW bias in Bodas-Salcedo et al. (2012). This understanding was711

refined in Bodas-Salcedo et al. (2014), which highlighted that the SW bias was associ-712

ated with an incorrectly simulated mid-level cloud regime, which occurred in regions where713

clouds with tops at mid-level and low-levels occurred. Our results align less well with714

more recent work by Ramadoss et al. (2024), which shows persistent shortwave radia-715

tive biases over the Southern Ocean are associated with incorrect cloud phase represen-716

tation. While Fiddes et al. (2024) suggest biases in the liquid water path are the largest717

contributor to the cloud radiative bias over the Southern Ocean. Our general finding ap-718

plies to the new GSRM ICON, but the biases are generally lower than in the reanaly-719
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ses, despite the reanalyses having the advantage of assimilation of the observed mete-720

orological conditions. The GSRM has, on the other hand, the advantage of a much higher721

spatial resolution and, to a limited extent, explicit calculation of traditionally subgrid-722

scale processes such as convection.723

We show that relative to ERA5, the distribution and strength of cyclonic activity724

over the SO is well represented in ICON, but it displays lower values of LTS. The lat-725

ter is also manifested in the radiosonde profile comparison, showing that the virtual po-726

tential temperature profiles in ICON are less stable than in the observations over low-727

latitude SO.728

The 31 voyages and a station show remarkably similar biases in cloud occurrence729

by height in the lidar comparison, which indicates that common underlying causes for730

the biases exist regardless of longitude and season. ICON underestimates the total cloud731

fraction by about 10%, with an overestimation of clouds below 2 km and an underesti-732

mation of clouds above 2 km. The reanalyses also underestimate the total cloud frac-733

tion by about 20%. ERA5 overestimates cloud below 1 km but underestimates near-surface734

cloud or fog. ICON strongly overestimates the peak of cloud occurrence at about 500735

m, which might be explained by the radiosonde comparison, showing that it is too moist736

at around this height. Similar to our results, Cesana et al. (2022) showed that CMIP6737

models also tend to underestimate cloud occurrence above 2 km over the SO, although738

their analysis in this case was limited to liquid clouds.739

Compared to lidar observations, the daily cloud cover tends to be about 1 okta lower740

in ICON and 2 oktas lower in the reanalyses. Conditions of weak stability are associated741

with some of the greatest biases, especially in ERA5. The models also underestimate the742

cloud cover very strongly in cyclonic conditions, which are very cloudy in the observa-743

tions (8 oktas), but much less so in the models. Similarly, McErlich et al. (2023) found744

a 40% underestimation of cloud liquid water in cyclones over the SO in ERA5, despite745

total column water vapor simulated much more accurately (5% underestimation).746

The radiosonde observations indicate that the LCL is too high in ICON and reanal-747

yses, which is probably responsible for the higher peak of clouds in the models and the748

lack of near-surface clouds or fog. The radiosonde comparison, however, does not seem749

to explain cloud biases at higher altitudes, which is perhaps suggestive of biases in the750

influence of the liquid water path in the models relative to reality. MERRA-2 is too moist751

at all heights. ICON also exhibits smaller internal variability than the radiosonde ob-752

servations. Overall, the radiosonde comparison only partially explains the identified cloud753

biases, and other physical causes are likely contributing. This warrants further investi-754

gation, especially of ocean–atmosphere fluxes, shallow convection, and boundary layer755

turbulence. The lack of parameterized subgrid-scale convection in ICON could be a sub-756

stantial issue even at the 5-km resolution.757

The relationship between cloud biases and radiation has a number of notable fea-758

tures. Perhaps unsurprisingly, the reanalyses exhibit the too few, too bright bias pre-759

viously identified in models. In our results, this is characterized by outgoing TOA SW760

radiation similar to or higher than in the satellite observations, while at the same time761

total cloud fraction is substantially underestimated relative to the ground-based lidar762

observations. This feature seems to be much more pronounced in ERA5 than in MERRA-763

2. On the other hand, this relationship is not present in ICON. This model generally pre-764

dicts smaller outgoing TOA SW radiation and smaller total cloud fraction than obser-765

vations, and the deficit of outgoing TOA SW radiation is approximately proportional766

to the deficit of the total cloud fraction. While this might be a welcome feature and an767

improvement over previous models, it does mean that the outgoing TOA SW radiation768

is overall underestimated instead of being compensated by a higher cloud albedo. This769

can, of course, lead to undesirable secondary effects such as overestimated solar heat-770

ing of the sea surface, among other factors responsible for SO SST biases in climate mod-771
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els (Q. Zhang et al., 2023; Luo et al., 2023; Hyder et al., 2018). To some extent, the cloud772

albedo might be reduced in the model artificially by the application of an inhomogene-773

ity factor to lower cloud liquid water in the radiative transfer calculations (Sec. 2.5).774

The results imply that SO cloud biases are still a substantial issue even in the km-775

scale resolution ICON model, even though an improvement over the lower-resolution re-776

analyses is notable. More effort is therefore needed to improve the model cloud simu-777

lations in this understudied region. However, this analysis suggests that the transition778

from models with parameterized convection and clouds to storm-resolving models might779

not solve these biases without additional effort. Evaluation of ocean–atmosphere heat,780

moisture, and momentum fluxes against in-situ observations over the SO and compar-781

ison of GSRM simulations against large-eddy simulations are two potential avenues for782

future research that could elucidate the physical mechanisms behind the biases, in ad-783

dition to the more common efforts in SO cloud microphysics and precipitation evalua-784

tion.785
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.de), as listed in Table 2. The MARCUS and MICRE datasets are openly available from788

ARM (https://www.arm.gov). The MERRA-2 data are openly available from the NASA789

Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (https://790

disc.gsfc.nasa.gov/datasets?project=MERRA-2). The ERA5 data are openly avail-791

able from the Copernicus Climate Data Store (CDS) (https://cds.climate.copernicus792

.eu). The ICON data are available on the Levante cluster of the DKRZ (https://www793

.dkrz.de/en/systems/hpc/hlre-4-levante) after registration at https://luv.dkrz794

.de/register/. The CERES products are openly available from the project website (https://795

ceres.larc.nasa.gov) and the NASA Atmospheric Science Data Centre (https://asdc796

.larc.nasa.gov/project/CERES). The TAN1802 data are openly available on Zenodo797

(Kremser et al., 2020). The code for performing the presented analysis, precipitation de-798

tection, and a custom version of the ALCF using for our analysis are open-source and799

available at https://github.com/peterkuma/icon-so-2024, https://github.com/800

peterkuma/alcf-precip, and https://github.com/peterkuma/icon-so-2024-alcf,801

respectively. The remaining voyage data (AA15-16, HMNZSW16, NBP1704, TAN1502,802

and TAN1702) are openly available on Zenodo (McDonald, Alexander, et al., 2024). The803

Natural Earth dataset is openly available from https://www.naturalearthdata.com.804
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Schröder, M., & Rohardt, G. (2017). Continuous thermosalinograph oceanogra-1567

phy along POLARSTERN cruise track PS96 (ANT-XXXI/2) [Dataset]. PAN-1568

GAEA. Retrieved from https://doi.org/10.1594/PANGAEA.873151 doi: 101569

.1594/PANGAEA.8731511570
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