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Abstract31

Global storm resolving models (GSRMs) represent the next generation of global climate32

models. One of them is a 5-km Icosahedral Nonhydrostatic Weather and Climate Model33

(ICON). Its high resolution means that parameterizations of convection and clouds, in-34

cluding subgrid-scale clouds, are omitted, relying on explicit simulation but necessarily35

utilizing microphysics and turbulence parameterizations. Standard-resolution (10–100 km)36

models, which use convection and cloud parameterizations, have substantial cloud bi-37

ases over the Southern Ocean (SO), adversely affecting radiation and sea surface tem-38

perature. The SO is dominated by low clouds, which cannot be observed accurately from39

space due to overlapping clouds, attenuation, and ground clutter. We evaluated SO clouds40

in ICON and the ERA5 and MERRA-2 reanalyses using approximately 2400 days of li-41

dar observations and 2300 radiosonde profiles from 31 voyages and a Macquarie Island42

station during 2010–2021, compared to the models using a ground-based lidar simula-43

tor. We found that ICON and the reanalyses underestimate the total cloud fraction by44

about 10 and 20%, respectively. ICON and ERA5 overestimate the cloud occurrence peak45

at about 500 m, associated with underestimated lower tropospheric stability and over-46

estimated lifting condensation level. The reanalyses strongly underestimate fog and very47

low-level clouds, and MERRA-2 underestimates cloud occurrence at almost all heights.48

Outgoing shortwave radiation is overestimated in MERRA-2, implying a “too few, too49

bright” cloud problem. SO cloud and fog biases are a substantial issue in the analyzed50

models and result in shortwave and longwave radiation biases.51

Plain Language Summary52

Global storm-resolving models are climate models with km-scale horizontal reso-53

lution, which are currently in development. Reanalyses are the best estimates of past54

meteorological conditions based on an underlying global model and observations. We eval-55

uated clouds, temperature, and humidity profiles over the Southern Ocean in one such56

model, ICON and two reanalyses, based on 2400 days of ship and station observations.57

Thanks to the high resolution, ICON relies entirely on explicit simulation of clouds in-58

stead of subgrid-scale parameterizations. For the evaluation, we used ceilometer and ra-59

diosonde observations and a lidar simulator, which enables a fair comparison with ICON60

and reanalyses. We subset our results by cyclonic activity and stability. We found that61

ICON and reanalyses underestimate lidar-derived cloud fraction, and the reanalyses do62

so more strongly. Fog and very low-level clouds are especially underestimated in the re-63

analyses. However, ICON and one of the reanalyses also tend to overestimate the peak64

of cloud occurrence at 500 m above the ground, and it tends to be higher. This is linked65

to thermodynamic profiles, which show a higher lifting condensation level and lower sta-66

bility. Southern Ocean cloud and fog biases are an important problem in the analyzed67

models and result in radiation balance biases.68

1 Introduction69

Increasing climate model spatial resolution is one way of improving the accuracy70

of the representation of the climate system in models (Mauritsen et al., 2022). It has been71

practiced since the advent of climate modeling as more computational power, memory,72

and storage capacity become available. It is, however, often not as easy as changing the73

grid size because of the complex interplay between model dynamics and physics, which74

necessitates adjusting and tuning all components together. Increasing resolution is, of75

course, limited by the available computational power and a trade-off with increasing pa-76

rameterization complexity, which is another way of improving model accuracy. Current77

computational availability and acceleration from general-purpose computing on graph-78

ics processing units has progressed to enable km-scale (also called k-scale) Earth system79

models (ESMs) and coupled atmosphere–ocean general circulation models for research80
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today and will become operational in the future. Therefore, it represents a natural ad-81

vance in climate modeling. Global storm-resolving models (GSRMs) are emerging as a82

new front in the development of high-resolution global climate models, with horizontal83

grid resolutions of about 2–8 km (Satoh et al., 2019; Stevens et al., 2019). This resolu-84

tion is enough to resolve mesoscale convective storms, but smaller-scale convective plumes85

and cloud structure remain unresolved. At an approximately 5-km scale, non-hydrostatic86

processes also become important (Weisman et al., 1997), and for this reason such mod-87

els are generally non-hydrostatic. The terms global cloud-resolving models or global convection-88

permitting/-resolving models are also sometimes used interchangeably with GSRMs but89

imply that clouds or convection are resolved explicitly, which is not entirely true for GSRMs,90

as this would require an even higher horizontal resolution (Satoh et al., 2019). Repre-91

sentative of these efforts is the DYnamics of the Atmospheric general circulation Mod-92

eled On Non-hydrostatic Domains (DYAMOND) project (Stevens et al., 2019; DYAMOND93

author team, 2024), which is an intercomparison of nine global GSRMs over two 40-day94

time periods in summer (1 August–10 September 2016) and winter (20 January–1 March95

2020). A new one-year GSRM intercomparison is currently proposed by Takasuka et al.96

(2024), with the hope of also evaluating the seasonal cycle and large-scale circulation.97

An alternative to using a computationally costly GSRM is to train an artificial neural98

network on GSRM output and use it for subgrid-scale clouds, as done with the GSRM99

ICON by Grundner et al. (2022) and Grundner (2023).100

The main aim of this study is to evaluate the GSRM version of ICON developed101

by the nextGEMS project (nextGEMS authors team, 2024; Segura et al., 2025). ICON102

is developed and maintained jointly by Deutscher Wetterdienst, the Max-Planck-Institute103

for Meteorology, Deutsches Klimarechenzentrum (DKRZ), Karlsruhe Institute of Tech-104

nology, and the Center for Climate Systems Modeling. Our aim is to quantify how well105

the GSRM ICON simulates clouds over the Southern Ocean (SO), particularly in light106

of the fact that subgrid-scale clouds and convection are not parameterized in this model.107

This region is mostly dominated by boundary layer clouds generated by shallow convec-108

tion, and these are problematic to observe by spaceborne lidars and radars, which are109

affected by attenuation by overlapping and thick clouds (Mace et al., 2009; Medeiros et110

al., 2010) and ground clutter (Marchand et al., 2008), respectively. Specifically, the radar111

on CloudSat and lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-112

servation (CALIPSO), neither of which are operational any more, are affected by the above-113

mentioned issues, resulting in a strong underestimation of cloud occurrence below 2 km114

in a merged CloudSat–CALIPSO product relative to ground-based lidar observations at115

McMurdo Station (McErlich et al., 2021). Removing situations with higher overlapping116

clouds could enable a less biased comparison of low clouds. We hypothesize that this,117

in turn, can lead to systematic biases in low clouds in climate models, which are frequently118

evaluated against CloudSat–CALIPSO products. Reanalyses can also suffer from cloud119

biases, as these are usually parameterized in their atmospheric component and also in120

regions where input observations are sparse. This makes them a problematic reference121

for clouds over the SO, and any biases relative to a reanalysis should be interpreted with122

caution. Instead, we chose to use a large set of ship-based observations conducted with123

ceilometers and lidars on board the research vessel (RV) Polarstern and other ships and124

a station as a reference for the model evaluation. Altogether, we analyzed approximately125

2400 days of data from 31 voyages and a sub-Antarctic station covering diverse longi-126

tudes and latitudes of the SO. To achieve a like-for-like comparison with the models (ICON,127

MERRA-2, and ERA5), we used a ground-based lidar simulator called the Automatic128

Lidar and Ceilometer Framework [ALCF; Kuma et al. (2021)]. We contrasted the results129

with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanaly-130

sis 5 [ERA5; ECMWF (2019)] and the Modern-Era Retrospective analysis for Research131

and Applications, Version 2 [MERRA-2; Gelaro et al. (2017)].132

The nextGEMS project focuses on the research and development of GSRMs at mul-133

tiple modeling centers and universities in Europe. The project also develops GSRM ver-134
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sions of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON; Hohenegger135

et al. (2023)), the Integrated Forecasting System [IFS; ECMWF (2023)], and their ocean136

components at eddy-resolving resolutions: ICON-O (Korn et al., 2022) coupled with ICON137

and Finite-Element/volumE Sea ice-Ocean Model [FESOM; Q. Wang et al. (2014)] and138

Nucleus for European modeling of the Ocean [NEMO; Madec and the NEMO System139

Team (2023)] coupled with IFS. The project has so far produced ICON and IFS simu-140

lations with three development versions called Cycle 1–3 and a pre-final version, with141

a final production version planned by the end of the project. nextGEMS is not the only142

project developing GSRMs; other GSRMs (or GSRM versions of climate models) cur-143

rently in development include: Convection-Permitting Simulations With the E3SM Global144

Atmosphere Model [SCREAM; Caldwell et al. (2021)], Non-hydrostatic Icosahedral At-145

mospheric Model [NICAM; Satoh et al. (2008)], Unified Model (UM), eXperimental Sys-146

tem for High-resolution modeling for Earth-to-Local Domain [X-SHiELD; SHiELD au-147

thors team (2024)], Action de Recherche Petite Echelle Grande Echelle-NonHydrostatic148

version [ARPEGE-NH; Bubnová et al. (1995); Voldoire et al. (2017)], Finite-Volume Dy-149

namical Core on the Cubed Sphere [FV3, Lin (2004)], the National Aeronautics and Space150

Administration (NASA) Goddard Earth Observing System global atmospheric model151

version 5 [GEOS5; Putman and Suarez (2011)], Model for Prediction Across Scales [MPAS;152

Skamarock et al. (2012)], and System for Atmospheric Modeling [SAM; Khairoutdinov153

and Randall (2003)].154

Multiple cloud properties have an effect on shortwave (SW) and longwave (LW)155

radiation. To first order, the total cloud fraction, cloud phase, and the liquid and ice wa-156

ter path (LWP and IWP) are the most important cloud properties influencing SW and157

LW radiation. These properties are in turn influenced by the atmospheric thermodynam-158

ics, convection and circulation, and both the indirect and direct effects of aerosols. Second-159

order effects on SW and LW radiation are associated with the cloud droplet size distri-160

bution, ice crystal habit, cloud lifetime, and direct radiative interaction with aerosols (Boucher161

et al., 2013). In the 6th phase of the Coupled Model Intercomparison Project [CMIP6;162

Eyring et al. (2016)], the cloud feedback has increased relative to CMIP5 (Zelinka et al.,163

2020), especially in the Southern Hemisphere mid-to-high latitudes, which is one of the164

main reasons for the higher climate sensitivity of CMIP6 models.165

The SO is known to be a problematic region for climate model biases (A. J. Schud-166

deboom & McDonald, 2021; Hyder et al., 2018; Cesana et al., 2022; Zhao et al., 2022)167

due to a lack of surface and in situ observations. This region has also long been a lower168

priority region for numerical weather prediction (NWP) and climate model development169

because of its distance from populated areas. Nevertheless, radiation biases and changes170

over an area of its size have a substantial influence on the global climate (Rintoul, 2011;171

Bodas-Salcedo et al., 2012), such as affecting the Earth’s radiation balance, ocean heat,172

and carbon uptake (R. G. Williams et al., 2023), and the SO is also an important part173

of the global ocean conveyor belt (C. Wang et al., 2014). In general, marine clouds have174

a disproportionate effect on top-of-atmosphere (TOA) SW radiation due to the relatively175

low albedo of the sea surface. The relative longitudinal symmetry of the SO means that176

model cloud biases tend to be similar across longitudes.177

In the following text, we refer to the SO as ocean regions south of 40°S, low-latitude178

SO as 40–55°S, and high-latitude SO as south of 55°S, all the way to the Antarctic coast.179

The reason for this dividing latitude is to split the SO into about two equal zones, as well180

as the results by A. J. Schuddeboom and McDonald (2021) (Fig. 2b) which show a con-181

trast in CMIP model radiation biases. A. Schuddeboom et al. (2019) (Fig. 2) and Kuma182

et al. (2020) (Fig. 3) also show contrasting radiation biases in the Hadley Centre Global183

Environmental Model, which is also supported by Cesana et al. (2022), displaying con-184

trasting cloud biases due to the 0°C isotherm reaching the surface at 55°S. The findings185

of Niu et al. (2024), however, support a different dividing line of 62°S based on cloud con-186

densation nuclei concentration.187
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SO radiation biases have been relatively large and systematic compared to the rest188

of the globe since at least CMIP3 (Trenberth & Fasullo, 2010; Bodas-Salcedo et al., 2012),189

and the SO SW cloud radiative effect bias is still positive in eight CMIP6 models an-190

alyzed by A. J. Schuddeboom and McDonald (2021) over the high-latitude SO, whereas191

over the low-latitude SO it tends to be more neutral or negative in some models. Too192

much absorbed SW radiation over the SO was also identified in the GSRM SCREAM193

(Caldwell et al., 2021). Compensating biases are possible, such as the “too few too bright”194

cloud bias, characterized by too small a cloud fraction and too large a cloud albedo (Wall195

et al., 2017; Kuma et al., 2020), previously described by Webb et al. (2001), Weare (2004),196

M. H. Zhang et al. (2005), Karlsson et al. (2008), Nam et al. (2012), Klein et al. (2013),197

and Bender et al. (2017) in other regions and models, which means that a model can main-198

tain a reasonable SW radiation balance by reflecting too much SW radiation from clouds,199

but these cover too small an area. A study by Konsta et al. (2022) showed that this type200

of bias is still present in six analyzed CMIP6 models in tropical marine clouds, using the201

General-circulation-model-Oriented CALIPSO Cloud Product [CALIPSO–GOCCP; Chepfer202

et al. (2010)] and Polarization & Anisotropy of Reflectances for Atmospheric Sciences203

coupled with Observations from a Lidar [PARASOL; Lier and Bach (2008)] as a refer-204

ence. They suggest improper simulation of subgrid-scale cloud heterogeneity as a cause.205

Compensating cloud biases in the Australian Community Climate and Earth System Sim-206

ulator (ACCESS) – Atmosphere-only model version 2 (AM2) over the SO were analyzed207

by Fiddes et al. (2022) and Fiddes et al. (2024). Possner et al. (2022) showed that over208

the SO, the DYAMOND GSRM ICON underestimates low-level cloud fraction on the209

order of 30% and overestimates net downward TOA SW radiation by approximately 10210

Wm−2 in the highest model resolution run (2.5 km). Zhao et al. (2022) reported a sim-211

ilar SW radiation bias in five analyzed CMIP6 models over the high-latitude SO and an212

underestimation of the total cloud fraction on the order of 10% over the entire 40–60°S213

SO. Recently, Ramadoss et al. (2024) analyzed 48 hours of km-scale ICON limited-area214

model NWP simulations over an SO region adjacent to Tasmania against the Clouds,215

Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRn oceaN216

(CAPRICORN) voyage cloud and precipitation observations (McFarquhar et al., 2021).217

They found the ICON cloud optical thickness was underestimated relative to Himawari-218

8 satellite observations but also identified large differences in cloud top phase.219

In general, sea surface temperature (SST) biases in the SO can originate either in220

the atmosphere (Hyder et al., 2018), caused by too much SW heating of the surface or221

too little LW cooling of the surface, such as in situations of too much cloud cover or cloud222

optical thickness, or in the ocean circulation. Interactions of both are also possible; for223

example, SST affecting clouds and clouds affecting the surface radiation. Using ERA5224

as a reference, Q. Zhang et al. (2023) have shown that SST biases have improved in CMIP6225

compared to CMIP5, with SST overall increasing in CMIP6. However, over the SO, this226

resulted in an even higher positive bias, especially in the Atlantic Ocean (AO) sector of227

the SO, increasing by up to 1°C. Luo et al. (2023) identified that the SO SST bias in an228

ensemble of 18 CMIP6 models originates not from the surface heat and radiation fluxes229

(using reanalyses as a reference) but from a warm bias in the Northern Atlantic Deep230

Water.231

2 Methods232

2.1 Voyage and Station Data233

Together, we analyzed data from 31 voyages of RV Polarstern, the resupply ves-234

sel (RSV) Aurora Australis, RV Tangaroa, RV Nathaniel B. Palmer, Her (now His) Majesty’s235

New Zealand Ship (HMNZS) Wellington, and one sub-Antarctic station (Macquarie Is-236

land) in the SO south of 40°S between 2010 and 2021. Fig. 1 shows a map of the cam-237

paigns, Table 1 lists the campaigns, and Table 2 lists references where available. The an-238
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alyzed dataset comprised 2421 days of data south of 40°S, but the availability of ceilome-239

ter data was slightly shorter due to gaps in measurements.240

The campaigns contained ceilometer observations captured by the Vaisala CL51,241

CT25K, and the Lufft CHM 15k, described in detail below (Sections 2.2 and 2.3). A ceilome-242

ter is a low-power, near-infrared, vertically pointing lidar principally designed to mea-243

sure cloud base, but they also measure the full vertical structure of clouds as long as the244

laser signal is not attenuated by thick clouds, which can be used to infer additional in-245

formation such as a cloud mask and cloud occurrence by height. We note that during246

the MICRE campaign, the ceilometers Vaisala CT25K and CL51 were installed at the247

Macquarie Island station concurrently, but in our analysis we only used the CT25K data248

obtained from the Atmospheric Radiation Measurement (ARM) data archive.249

Apart from lidar observations, radiosondes were launched on weather balloons at250

regular synoptic times on the RV Polarstern, MARCUS, NBP17024, TAN1702, and TAN1802251

campaigns, measuring pressure, temperature, relative humidity (RH), and the global nav-252

igation satellite system coordinates. In total, about 2300 radiosonde profiles south of 40°S253

(a)

(d)

(b)

(c)

(e)

Figure 1. (a) A map showing the tracks of 31 voyages of RV Polarstern, RSV Aurora Aus-

tralis, RV Tangaroa, RV Nathaniel B. Palmer, and HMNZS Wellington and one sub-Antarctic

station (Macquarie Island) analyzed here. The tracks cover Antarctic sectors south of South

America, the Atlantic Ocean, Africa, Australia, and New Zealand in the years 2010–2021 (inclu-

sive). The dotted and dashed lines at 40°S and 55°S delineate the Southern Ocean area of our

analysis and its partitioning into two subsets, respectively. A photo of (b) RV Polarstern (©
Folke Mehrtens, Alfred-Wegener-Institut), (c) Lufft CHM 15k installed on RV Tangaroa (©
Peter Kuma, University of Canterbury), (d) Vaisala CL51 (© Jeff Aquilina, Bureau of Meteo-

rology), (e) Vaisala CT25K at Macquarie Island (© Simon P. Alexander, Australian Antarctic

Division).
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were available. Spatially and temporally collocated profiles were taken from the mod-254

els. Because the time period covered by the ICON model output (2021–2024) was dif-255

ferent from the time period covered by the observations (2010–2021), when comparing256

with ICON, we first had to remap the observation time to model time by taking the same257

time relative to the start of the year. Consequently, we also had four virtual/model pro-258

files (one for each year from 2021 to 2024) for each observed profile. Derived thermody-259

namic [virtual potential temperature (θv), lifting condensation level (LCL), etc.] and dy-260

namic physical quantities (wind speed and direction) for the measured vertical profiles261

were calculated with the program radiosonde tool [rstool; Kuma (2024d)]. Surface me-262

teorological quantities were measured continuously by an onboard automatic weather sta-263

tion or individual instruments.264

Some of the observational data were likely used in the assimilation of the reanal-265

yses. The Macquarie Island station surface measurements and radiosonde profiles (not266

used in our analysis) were sent to the World Meteorological Organization Global Telecom-267

munication System (GTS). The measurements on the RSV Aurora Australis and HMNZS268

Wellington were not used outside of research purposes. The AWS measurements, but269

not lidar or radiosonde measurements on the RV Tangaroa voyages, were collected by270

the New Zealand MetService and communicated to the GTS. The ceilometer measure-271

ments on NBP1704 were not used outside of research purposes.272

2.2 Vaisala CL51 and CT25K273

The Vaisala CL51 and CT25K (photos in Fig. 1d, e) are ceilometers operating at274

near-infrared wavelengths of 910 nm and 905 nm, respectively. The CL51 can also be275

configured to emulate the Vaisala CL31. The maximum range is 15.4 km (CL51), 7.7 km276

(CL31 emulation mode with 5 m vertical resolution), and 7.5 km (CT25K). The verti-277

cal resolution is 10 m (5 m configurable) in CL51 and 30 m in CT25K observations. The278

sampling (temporal) resolution is configurable, and in our datasets, it is approximately279

6 s for CL51 on AA15-16, 16 s for CT25K on MARCUS and MICRE, 36 s for CL51 on280

RV Polarstern, and about 2.37 s for CL51 with CL31 emulation on TAN1502. The wave-281

lengths of 905 and 910 nm are both affected by water vapor absorption of about 20%282

in the mid-latitudes (Wiegner & Gasteiger, 2015; Wiegner et al., 2019), with 910 nm af-283

fected more strongly, but we do not expect this to be a significant issue, as explained in284

Kuma et al. (2021). The instrument data files containing raw uncalibrated backscatter285

were first converted to the Network Common Data Form (NetCDF) with cl2nc (Kuma,286

2024c) and then processed with the ALCF (Section 2.4) to produce absolutely calibrated287

attenuated volume backscattering coefficient (AVBC), cloud mask, cloud occurrence by288

height, and the total cloud fraction. Because the CT25K uses a very similar wavelength289

to the CL51, equivalent calculations as for the CL51 were done assuming a wavelength290

of 910 nm. The Vaisala CL51 and CT25K instruments were used on most of the voy-291

ages and stations analyzed here. Fig. 2a shows an example of AVBC derived from the292

CL51 instrument data.293

2.3 Lufft CHM 15k294

The Lufft CHM 15k (photo in Fig. 1c) ceilometer operates at a near-infrared wave-295

length of 1064 nm. The maximum range is 15.4 km; the vertical resolution is 5 m in the296

near range (up to 150 m) and 15 m above; the sampling (temporal) resolution is 2 s; and297

the number of vertical levels is 1024. NetCDF files containing uncalibrated backscatter298

produced by the instrument were processed with the ALCF (Section 2.4) to produce AVBC,299

cloud mask, cloud occurrence by height, and the total cloud fraction. The CHM 15k was300

used on four voyages (HMNZSW16, TAN1702, TAN1802, and NBP1704).301
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Table 1. An overview of the analyzed campaigns (voyages and stations). Start, end, and the

number of days (UTC; inclusive) refer to the time period when the vessel was south of 40°S.
Abbreviations: ceilometer (ceil.), Australia (AU), New Zealand (NZ), South America (SA),

Atlantic Ocean (AO), and Africa (AF). The number of days is rounded to the nearest integer.

CL51/31 indicates CL51 configured to emulate CL31. Missing days in the ceilometer data were

HMNZSW16 (7 days): 24–27 November, 10 December, and 16–17 December 2016; MARCUS

(3 days): 8, 10 November, and 10 December 2017; MICRE (9 days): 7–8, 29 June, 5, 16 July,

15 August, 17 October 2016, 11 February, and 21 March 2017; and TAN1502 (1 day): 24 Jan-

uary.

Name Vessel or station Ceil. Region Start End Days

AA15-16 RSV Aurora Australis CL51 AU 2015-10-22 2016-02-22 124

HMNZSW16 HMNZS Wellington CHM 15k NZ 2016-11-23 2016-12-19 27

MARCUS RSV Aurora Australis CT25K AU 2017-10-29 2018-03-26 149

MICRE Macquarie Is. station CT25K AU/NZ 2016-04-03 2018-03-14 710

NBP1704 RV Nathaniel B. Palmer CHM 15k NZ 2017-04-14 2017-06-08 55

PS77/2 RV Polarstern CL51 SA/AO/AF 2010-12-01 2011-02-04 65

PS77/3 RV Polarstern CL51 SA/AO/AF 2011-02-07 2011-04-14 66

PS79/2 RV Polarstern CL51 SA/AO/AF 2011-12-06 2012-01-02 27

PS79/3 RV Polarstern CL51 SA/AO/AF 2012-01-10 2012-03-10 61

PS79/4 RV Polarstern CL51 SA/AO/AF 2012-03-14 2012-04-08 26

PS81/2 RV Polarstern CL51 SA/AO/AF 2012-12-02 2013-01-18 47

PS81/3 RV Polarstern CL51 SA/AO/AF 2013-01-22 2013-03-17 55

PS81/4 RV Polarstern CL51 SA/AO/AF 2013-03-18 2013-04-16 30

PS81/5 RV Polarstern CL51 SA/AO/AF 2013-04-20 2013-05-23 33

PS81/6 RV Polarstern CL51 SA/AO/AF 2013-06-10 2013-08-12 63

PS81/7 RV Polarstern CL51 SA/AO/AF 2013-08-15 2013-10-14 60

PS81/8 RV Polarstern CL51 SA/AO/AF 2013-11-12 2013-12-14 31

PS81/9 RV Polarstern CL51 SA/AO/AF 2013-12-21 2014-03-02 71

PS89 RV Polarstern CL51 SA/AO/AF 2014-12-05 2015-01-30 56

PS96 RV Polarstern CL51 SA/AO/AF 2015-12-08 2016-02-14 68

PS97 RV Polarstern CL51 SA/AO/AF 2016-02-15 2016-04-06 52

PS103 RV Polarstern CL51 SA/AO/AF 2016-12-18 2017-02-02 46

PS104 RV Polarstern CL51 SA/AO/AF 2017-02-08 2017-03-18 39

PS111 RV Polarstern CL51 SA/AO/AF 2018-01-21 2018-03-14 52

PS112 RV Polarstern CL51 SA/AO/AF 2018-03-18 2018-05-05 49

PS117 RV Polarstern CL51 SA/AO/AF 2018-12-18 2019-02-07 51

PS118 RV Polarstern CL51 SA/AO/AF 2019-02-18 2019-04-08 50

PS123 RV Polarstern CL51 SA/AO/AF 2021-01-10 2021-01-31 21

PS124 RV Polarstern CL51 SA/AO/AF 2021-02-03 2021-03-30 55

TAN1502 RV Tangaroa CL51/31 NZ 2015-01-20 2015-03-12 51

TAN1702 RV Tangaroa CHM 15k NZ 2017-03-09 2017-03-31 23

TAN1802 RV Tangaroa CHM 15k NZ 2018-02-07 2018-03-20 41

Total 2421
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Table 2. Campaign publication references.

Name References

AA15-16 Klekociuk et al. (2020)

MARCUS McFarquhar et al. (2021); Xia and McFarquhar (2024); Niu et al. (2024)

MICRE McFarquhar et al. (2021)

NBP1704 Ackley et al. (2020)

PS77/2 König-Langlo (2011e, 2011a, 2011c, 2014h); Fahrbach and Rohardt (2011)

PS77/3 König-Langlo (2011d, 2011b, 2012g, 2014i); Knust and Rohardt (2011)

PS79/2 König-Langlo (2012h, 2012d, 2012a, 2014j); Kattner and Rohardt (2012)

PS79/3 König-Langlo (2012i, 2012b, 2012e, 2014k); Wolf-Gladrow and Rohardt (2012)

PS79/4 König-Langlo (2012j, 2012c, 2012f, 2014l); Lucassen and Rohardt (2012)

PS81/2 König-Langlo (2013l, 2013a, 2013f, 2014a); Boebel and Rohardt (2013)

PS81/3 König-Langlo (2013m, 2013g, 2013b, 2014b); Gutt and Rohardt (2013)

PS81/4 König-Langlo (2013n, 2013c, 2013h, 2014c); Bohrmann and Rohardt (2013)

PS81/5 König-Langlo (2013o, 2013d, 2013i, 2014d); Jokat and Rohardt (2013)

PS81/6 König-Langlo (2013p, 2013e, 2013j, 2014e); Lemke and Rohardt (2013)

PS81/7 König-Langlo (2013q, 2013k, 2014f, 2016c); Meyer and Rohardt (2013)

PS81/8 König-Langlo (2013r, 2014g, 2014n, 2014p); Schlindwein and Rohardt (2014)

PS81/9 König-Langlo (2014r, 2014m, 2014o, 2014q); Knust and Rohardt (2014)

PS89 König-Langlo (2015a, 2015d, 2015b, 2015c); Boebel and Rohardt (2016)

PS96 König-Langlo (2016h, 2016a, 2016d, 2016f); Schröder and Rohardt (2017)

PS97 König-Langlo (2016i, 2016e, 2016b, 2016g); Lamy and Rohardt (2017)

PS103 König-Langlo (2017f, 2017d, 2017a, 2017c); Boebel and Rohardt (2018)

PS104 König-Langlo (2017e, 2017g, 2017b); Gohl and Rohardt (2018); Schmithüsen (2021g)

PS111 Schmithüsen (2019a, 2020a, 2021h, 2021a); Schröder and Rohardt (2018)

PS112 Schmithüsen (2019b, 2020b, 2021b, 2021i); Meyer and Rohardt (2018)

PS117 Schmithüsen (2019c, 2020c, 2021j, 2021c); Boebel and Rohardt (2019)

PS118 Schmithüsen (2019d, 2020d, 2021d, 2021k); Dorschel and Rohardt (2019)

PS123 Schmithüsen (2021m, 2021e, 2021l); Schmithüsen, Jens, and Wenzel (2021); Hoppmann, Tippen-

hauer, and Heitland (2023)

PS124 Schmithüsen (2021n, 2021f); Schmithüsen, Rohleder, et al. (2021); Hoppmann, Tippenhauer, and

Hellmer (2023)

TAN1802 Kremser et al. (2020, 2021)

2.4 ALCF302

The Automatic Lidar and Ceilometer Framework (ALCF) is a ground-based lidar303

simulator and a tool for processing observed lidar data, supporting various instruments304

and models (Kuma et al., 2021). It performs radiative transfer calculations to derive equiv-305

alent lidar AVBC from an atmospheric model, which can then be compared with observed306

AVBC. For this purpose, it takes the cloud fraction, liquid and ice mass mixing ratio,307

temperature, and pressure model fields as an input and is run offline (on the model out-308

put rather than inside the model code). The lidar simulator in the ALCF is based on309

the instrument simulator Cloud Feedback Model Intercomparison Project (CFMIP) Ob-310

servation Simulator Package (COSP) (Bodas-Salcedo et al., 2011). After AVBC is cal-311

culated, a cloud mask, cloud occurrence by height, and the total cloud fraction are de-312

termined. The total cloud fraction is defined as the fraction of profiles with clouds at any313
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height in the lidar cloud mask. The ALCF has in the past been used by several research314

teams for model and reanalysis evaluation (Kuma et al., 2020; Kremser et al., 2021; Guyot315

et al., 2022; Pei et al., 2023; Whitehead et al., 2023; McDonald, Kuma, et al., 2024).316

Absolute calibration of the observed backscatter was performed by comparing the317

measured clear-sky molecular backscatter statistically with simulated clear-sky molec-318

ular backscatter. AVBC was resampled to 5 min temporal resolution and 50 m vertical319

resolution to increase the signal-to-noise ratio while having enough resolution to detect320

small-scale cloud variability. The noise standard deviation was calculated from AVBC321

at the highest range, where no clouds are expected. A cloud mask was calculated from322

AVBC using a fixed threshold of 2× 10−6m−1sr−1 after subtracting 5 standard devia-323

tions of range-scaled noise. Fig. 2b shows an example of simulated Vaisala CL51 backscat-324

ter from ERA5 data, corresponding to a day of measurements by the instrument on the325

PS81/3 voyage.326

How attenuation of the lidar signal affects cloud detection is dependent on factors327

such as the optical thickness of the measured cloud and its backscattering phase func-328

tion, as well as the range-dependent noise standard deviation (Kuma et al., 2021). A rough329

estimate can be made under an assumption of a relatively strongly backscattering cloud330

of β = 100× 10−6m−1sr−1 at a height of r1 = 2 km, range-dependent noise βn at r2331

= 8 km of about 5× 10−6m−1sr−1, and cloud detection threshold βt = 2× 10−6m−1sr−1,332

noise multiplication factor f = 5. At full attenuation (relative to the detection thresh-333

old), the two-way attenuation factor A satisfies Aβ = βt+f×βn

(
r1
r2

)2

. This is equiv-334

Figure 2. An example of the attenuated volume backscattering coefficient (AVBC) (a) mea-

sured by the CL51 during 24 hours on the PS81/3 voyage and (b) an equivalent AVBC simulated

with the ALCF from ERA5 data during the same time period. The red line identifies the cloud

mask determined by the ALCF.
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alent to exponential decay (A = e−2δ) with optical depth δ (at the lidar wavelength)335

of about 1.7.336

2.5 ICON337

A coupled (atmosphere–ocean) GSRM version of the ICON model is in develop-338

ment as part of the nextGEMS project (Hohenegger et al., 2023). ICON is a very flex-339

ible model, allowing for simulations ranging from coarse-resolution ESM simulations, GSRM340

simulations, limited area model simulations, and large eddy simulations (LES) for both341

weather prediction and climate projections. ICON uses the atmospheric component ICON-342

A (Giorgetta et al., 2018), whose physics is derived from ECHAM6 (Stevens et al., 2013),343

and the ocean component ICON-O (Korn et al., 2022). Earlier runs of the GSRM ICON344

from DYAMOND were evaluated by Mauritsen et al. (2022).345

Here, we use a free-running (i.e., the weather conditions in the model do not cor-346

respond to reality) coupled GSRM simulation made for the purpose of climate projec-347

tion. nextGEMS has so far produced four cycles of model runs. We used a Cycle 3 run348

ngc3028 produced in 2023 (Koldunov et al., 2023; nextGEMS authors team, 2023) for349

a model time period of 20 January 2020 to 22 July 2025, of which we analyzed the pe-350

riod 2021–2024 (inclusive). The horizontal resolution of ngc3028 is about 5 km. The model351

output is available on 90 vertical levels and 3-hourly instantaneous temporal resolution.352

Unlike current general circulation models, the storm-resolving version of ICON does353

not use convective and cloud parameterization but relies on explicit simulation of con-354

vection and clouds on the model grid. Subgrid-scale clouds are not resolved, and the grid355

cell cloud fraction is always either 0 or 100%. While this makes the code development356

simpler without having to rely on uncertain parameterizations, it can miss smaller-scale357

clouds below the grid resolution. Turbulence and cloud microphysics have to be param-358

eterized in this model as in other models, and aerosols are derived from a climatology.359

To account for the radiative effects of subgrid-scale clouds, a cloud inhomogeneity fac-360

tor is introduced in the model, which scales down the cloud liquid water for radiative361

calculations. It ranges from 0.4 at lower tropospheric stability (LTS) of 0 K to 0.8 at 30 K.362

In addition, turbulent mixing in the Smagorinsky scheme was adjusted to allow mixing363

or entrainment in situations of no mixing under the traditional scheme, affecting stra-364

tocumulus clouds but not trade wind clouds (Segura et al., 2025).365

Because the analyzed ICON simulation was free-running (years 2021–2024, inclu-366

sive), weather and climate oscillations [such as the El Niño–Southern Oscillation (ENSO)367

phase] are not expected to be equivalent to reality. To compare with the observations368

collected during a different time period (years 2010–2021, inclusive), we compared the369

model output with observations at the same time of year and geographical location, as370

determined for each data point, such as a lidar profile or a radiosonde launch. In the ALCF,371

this was done using the override year option.372

Due to our comparison being long-term and large-scale, it is expected that a com-373

parison between the free-running model and observations is statistically robust, despite374

weather-related differences between the two. Furthermore, the results from multiple cam-375

paigns are combined in a way that equal statistical weight is given to each campaign,376

eliminating an outsize influence of longer campaigns, allowing us to estimate uncertainty377

ranges under the assumption of independence of weather conditions between the cam-378

paigns, and ensuring that the results are statistically representative over the whole area379

covered by the campaigns. Different approaches to a comparison would be possible. For380

example, one could use only the first several days of a free-running simulation initialized381

from observations (or a reanalysis) for a comparison, as done in the Transpose-AMIP382

experiments (K. D. Williams et al., 2013), thus being able to compare clouds and the383

physical drivers under the same weather conditions. Another possibility is the use of a384

model nudged to a reanalysis (Kuma et al., 2020), but this was not available for our ICON385
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simulations. We discuss further the implications of comparing the observations with a386

free-running model in Section 4.387

2.6 MERRA-2388

The Modern-Era Retrospective analysis for Research and Applications, Version 2389

(MERRA-2) is a reanalysis produced by the Global Modeling and Assimilation Office390

at the NASA Goddard Space Flight Center (Gelaro et al., 2017). It uses version 5.12.4391

of the Goddard Earth Observing System (GEOS) atmospheric model (Rienecker et al.,392

2008; Molod et al., 2015). Non-convective clouds (condensation, autoconversion, and evap-393

oration) are parameterized using a prognostic scheme (Bacmeister et al., 2006), and sub-394

grid cloud fraction is determined using total water distribution and a critical RH thresh-395

old. The reanalysis output analyzed here is available at a spatial resolution of 0.5° of lat-396

itude and 0.625° of longitude, which is about 56 km in the north–south direction and 35397

km in the east–west direction at 60°S. The number of vertical model levels is 72. Here,398

we use the following products: 1-hourly instantaneous 2D single-level diagnostics (M2I1NXASM)399

for 2-m temperature and humidity; 3-hourly instantaneous 3D assimilated meteorolog-400

ical fields (M2I3NVASM) for cloud quantities, pressure, and temperature; 1-hourly av-401

erage 2D surface flux diagnostics (M2T1NXFLX) for precipitation; and 1-hourly aver-402

age 2D radiation diagnostics (M2T1NXRAD) for radiation quantities (Bosilovich et al.,403

2016). Vertically resolved fields in M2I3NVASM start at a height of about 60 m, which404

limits our analysis of fog and very low-level (< 250 m) clouds in this reanalysis.405

2.7 ERA5406

ERA5 (ECMWF, 2019) is a reanalysis produced by the ECMWF. It is based on407

an NWP model IFS version CY41R2. It uses the Tiedtke (1993) prognostic cloud scheme408

and the Forbes and Ahlgrimm (2014) scheme for mixed-phase clouds. The horizontal res-409

olution is 0.25° in latitude and longitude, which is about 28 km in the north–south di-410

rection and 14 km in the east–west direction at 60°S. Internally, the model uses 137 ver-411

tical levels. Here, we use output at 1-hourly instantaneous time intervals, except for ra-412

diation quantities, which are accumulations (from these we calculate daily means). Ver-413

tically resolved quantities are available on 37 pressure levels.414

2.8 CERES415

TOA radiation quantities are taken from the Clouds and the Earth’s Radiant En-416

ergy System (CERES) instruments onboard the Terra and Aqua satellites (Wielicki et417

al., 1996; Loeb et al., 2018). In our analysis, we used the adjusted all-sky SW and LW418

upwelling fluxes at TOA, adjusted cloud LWP and IWP, and adjusted cloud amount from419

the synoptic TOA and surface fluxes and clouds 1-degree daily edition 4A product (CER SYN1deg-420

Day Terra-Aqua-MODIS Edition4A) (Doelling et al., 2013, 2016). The water paths in421

the product are computed from optical depth and particle size from geostationary satel-422

lites and the Moderate Resolution Imaging Spectroradiometer [MODIS, Pagano and Durham423

(1993)] (CERES author team, 2025). The water paths were multiplied by the cloud amount424

to get the water path relative to the whole grid cell area, equivalent to the definition used425

in the models.426

Radiation and water path calculations presented in the results (Section 3) were com-427

pleted such that they always represent daily means in order to be consistent with the428

CERES SYN1deg data. Therefore, every instantaneous profile in the simulated lidar data429

was assigned a daily mean radiation and water path value corresponding to the day (in430

the Coordinated Universal Time; UTC). In turn, the average radiation and water paths431

during the entire voyage or station observation period were calculated as averages of the432

profile values. In the observed lidar data, the daily mean values were taken from the spa-433
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tially and temporally co-located CERES SYN1deg data for the day (in UTC). The voy-434

age and station averages were calculated in the same way.435

2.9 Precipitation Identification Using Machine Learning436

Precipitation can cause strong enough lidar backscattering to be recognized as clouds437

by the threshold-based cloud detection method used in the ALCF. This is undesirable438

if equivalent precipitation backscatter is not included in the simulated lidar profiles. It439

was not possible to include precipitation simulation in the ALCF due to the absence of440

required fields of liquid and ice precipitation mass mixing ratios in the model output.441

While the fields could in principle be calculated from surface fluxes, such a calculation442

would be highly uncertain. The required radiation calculations for precipitation are also443

currently not implemented in the ALCF, even though this is a planned future addition.444
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Convolution 2D (256, 3 × 3) Maximum pooling 2D (1 × 2) Dropout (20%) Dense (64) Dense (4)Flatten Output (4)

(a) ANN diagram

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0‒250 m (vertical axis)

(c) Receiver operating characteristic (d) Measured and predicted precipitation time series
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Figure 3. Artificial neural network (ANN) for prediction of precipitation in lidar backscat-

ter. (a) Diagram showing the TensorFlow structure of the ANN, (b) randomly selected example

samples of very low-level (0–250 m) backscatter in four categories (clear, fog, rain, and snow),

as determined by coincident manual weather observations, (c) receiver operating characteristic

diagram of the ANN, (d) examples of 10-day time series of human-observed (“HUM”) and pre-

dicted precipitation based on an ANN trained on all voyages (“ANN”) and all voyages except

for the shown voyage (“ANN2”) during three randomly selected voyages with the available data.

Here, by “randomly selected,” we mean selected from the top of a permutation generated by a

pseudo-random number generator to prevent authors’ bias in the selection.
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In order to achieve a fair comparison of observations with model output, we exclude ob-445

served and simulated lidar profiles with precipitation, either manually or using an au-446

tomated method. It is relatively difficult to distinguish precipitation backscatter from447

cloud backscatter in lidar observations, especially when only one wavelength channel and448

no polarized channel are available (Kim et al., 2020). In models, the same can be accom-449

plished relatively easily by excluding profiles exceeding a certain surface precipitation450

flux. In the observations, using precipitation flux measurements from rain gauges can451

be very unreliable on ships due to ship movement, turbulence caused by nearby ship struc-452

tures, and sea spray. Our analysis of rain gauge data from the RV Tangaroa showed large453

discrepancies between the rain gauge time series and human-performed synoptic obser-454

vations, as well as large inconsistencies in the rain gauge time series. Human-performed455

observations of precipitation presence or absence are expected to be reliable but only cover456

a limited set of times. Therefore, it was desirable to implement a method of detecting457

precipitation from observed backscatter profiles alone.458

On the RV Polarstern voyages, regular manual synoptic observations were avail-459

able and included precipitation presence or absence and type. We used this dataset to460

train a convolutional artificial neural network (ANN) to recognize profiles with precip-461

itation from lidar backscatter data (Fig. 3a), implemented in the TensorFlow ANN frame-462

work (Abadi et al., 2015). Samples of short time intervals (10 min) of very low-level li-463

dar backscatter (0–250 m) were classified as clear, rain, snow, and fog, using the synop-464

tic observations as a training dataset (Fig. 3b). From these, a binary, mutually exclu-465

sive classification of profiles as precipitating (rain or snow) or dry (clear or fog) was de-466

rived. For detecting model and reanalysis precipitation, we used a fixed threshold for sur-467

face precipitation flux of 0.1 mm h−1 (the ANN was not used).468

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate469

(26%) was made to match observations. The receiver operating characteristic curve is470

shown in Fig. 3c. We considered these rates satisfactory for the purpose of filtering pre-471

cipitation profiles. Fig. 3d shows examples of the predicted precipitation compared to472

human-performed observations. The main ANN (‘ANN‘ in Fig. 3) was trained on all data,473

and ancillary ANNs (‘ANN2‘ in Fig. 3) were trained with portions of voyage data ex-474

cluded to test the results for each voyage.475
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Figure 4. Lower tropospheric stability (LTS) distribution in (a) ERA5 and (b) MERRA-2

calculated for the 31 voyage tracks and one station from the highest instantaneous temporal reso-

lution data available. Shown is also the chosen dividing threshold of 12 K for conditions of weak

and strong stability.
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2.10 Partitioning by Cyclonic Activity and Stability476

In our analysis, we partitioned our dataset by cyclonic activity and stability into477

multiple subsets to evaluate cloud biases in the context of the main physical controlling478

processes. The SO is a region of the occurrence of both extratropical and polar cyclones.479

Cyclonic activity results in cloud formation at the air mass boundaries along the cold480

and warm fronts, as well as inside the cold sector, after a passing cold sector destabilizes481

the atmosphere relative to the surface temperature. In the cold front and cold sector,482

clouds are convectively driven, including deep convection, and the advection of colder483

air masses over warmer ocean surfaces can trigger convection and subsequent cloud for-484

mation. In contrast, warm advection can trigger fog or cloud formation by boundary layer485

air cooled by the ocean surface until it reaches saturation. More quiescent areas outside486

of cyclones can also be associated with clouds. These can be, for example, associated with487

clouds formed by warm or cold advection outside of cyclones, persistent clouds, clouds488

formed due to diurnal heating or cooling, or clouds formed due to ocean currents. Bound-489

ary layer stability can be expected to be associated with clouds by either allowing con-490

vection and turbulence under weak stability, inhibiting convection turbulence under strong491

stability, and by capping inversion controlling the cloud top height or trapping moist air492

near the surface and preventing fog dispersion. Therefore, dividing our dataset by these493

subsets allows us to quantify model biases associated with some of the main physical pro-494

cesses controlling cloud formation, persistence, and dissipation. Other methods of sub-495

setting, such as using the International Satellite Cloud Climatology Project (ISCCP) pres-496

sure–optical thickness diagram (Rossow & Schiffer, 1991, 1999; Hahn et al., 2001) to sep-497

arate profiles by cloud regimes and other cloud regime classifications (Oreopoulos et al.,498

2016; A. Schuddeboom et al., 2018), would be feasible.499

We partitioned our data into two mutually exclusive subsets by cyclonic activity.500

For this purpose, we used a cyclone tracking algorithm to identify extratropical cyclones501

and polar cyclones over the SO in the reanalysis and ICON data. We used the open-source502

cyclone tracking package CyTRACK (Pérez-Alarcón et al., 2024). Generally, what con-503

stitutes an extratropical cyclone is considered relatively arbitrary due to the very large504

variability of the cyclones (Neu et al., 2013). The CyTRACK algorithm uses mean sea505

level pressure and wind speed thresholds as well as tracking across time steps to iden-506

tify cyclone centers and their radii in each time step. With this information, we could507

classify every location at a given time as either cyclonic or non-cyclonic. Due to a rel-508

atively small total area covered by cyclones, as identified by the cyclone center and ra-509

dius, for every time step and cyclone, we defined a cyclonic area as a circle of double the510

radius identified by CyTRACK centered at the cyclone center. All other areas were de-511

fined as non-cyclonic. For identifying cyclones in the observations and the reanalyses,512

ERA5 pressure and wind fields were used as the input to CyTRACK. This is justified513

by the fact that the large-scale pressure and wind fields in ERA5 are likely sufficiently514

close to reality. McErlich et al. (2023) have shown that wind is simulated well in ERA5515

relative to the WindSat polarimetric microwave radiometer measurements (Meissner &516

Wentz, 2009). For identifying cyclones in ICON, its own pressure and wind fields were517

used as the input to CyTRACK because ICON is free-running, and thus the pressure518

and wind fields are different from reality. Subsetting by proximity to cyclones is a rel-519

atively crude measure because it does not take into account the different sectors of cy-520

clones, which are commonly associated with different weather situations. However, this521

was a choice made for simplicity of the analysis, given the quantity of data. Konstali et522

al. (2024) performed a more complex attribution of precipitation to individual cyclone523

features.524

In addition to the above, we partitioned our data into two mutually exclusive sub-525

sets based on LTS, which is derived as the difference between the potential temperature526

at 700 hPa and the surface. Based on a histogram of LTS in ERA5 and MERRA-2 cal-527

culated at all voyage tracks and stations (Fig. 4), we determined a statistically based di-528
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viding threshold of 12 K for weak stability (< 12 K) and strong stability (≥ 12 K) con-529

ditions.530

3 Results531

3.1 Cyclonic Activity and Stability532

Fig. 5a and b show the geographical distribution of the fraction of cyclonic days533

as determined by the cyclone tracking algorithm applied to the ERA5 reanalysis and ICON534

data (Section 2.10). As expected, the strongest cyclonic activity is in the high-latitude535

SO zone and is relatively zonally symmetric at all latitudes. The pattern matches rea-536

sonably well with Hoskins and Hodges (2005). While both reanalysis and ICON agree537

within about 8% in most areas, ICON is prevailingly more cyclonic by about 4%. There538

are clear differences, particularly in the highest occurrence rate regions, such as around539

Cape Adare, which is up to 20% more cyclonic in ICON, and the Weddell and Belling-540

shausen Seas, where ICON is less cyclonic by up to 10%. These differences might, how-541

ever, stem from the relatively short time periods of comparison (4 years) and the fact542

that ICON is free-running.543

Fig. 5c, d show the geographical distribution of the conditions of weak and strong544

stability as determined by the LTS (Section 2.10). Conditions of weak stability are preva-545

lent in the mid-to-high SO (50–65°S), which might be explained by the relatively cold546

near-surface air overlying the relatively warm sea surface. Conditions of strong stabil-547

ity are common elsewhere over the SO. The distribution is also less zonally symmetric548

than the cyclonic activity. In the high-latitude SO, the presence of sea ice might have549

a substantial stabilizing effect (Knight et al., 2024). ICON is also substantially less sta-550

ble than ERA5 across the whole region. In Section 3.5 we show that based on radiosonde551

observations, the bias is in ICON and not ERA5, and it is the result of underestimated552

temperature at heights corresponding to 700 hPa, as well as overestimated near-surface553

(2 m) air temperature, characterized by a higher frequency of occurrence in the 1–7°C554

range compared to observations at radiosonde launch locations (Fig. S1a). This may be555

related to large-scale circulation in ICON or radiative transfer biases.556

3.2 Cloud Occurrence by Height557

We used the ALCF to derive cloud occurrence by height and the total cloud frac-558

tion from observations, ICON, ERA5, and MERRA-2. The results for all campaigns in-559

dividually are shown in Fig. S2. As shown in this figure, the biases are relatively con-560

sistent across the campaigns and longitudes. In addition, we aggregated the campaigns561

by calculating the averages and percentiles of all individual profiles, presented in Fig. 6.562

The analysis shows that the total cloud fraction is underestimated in ICON by about563

10% and in the reanalyses by about 20%. When analyzed by height, ICON overestimates564

cloud occurrence below 1 km and underestimates it above; MERRA-2 underestimates565

cloud occurrence at all heights by up to 10%, especially near the surface; and ERA5 sim-566

ulates cloud occurrence relatively well above 1 km but strongly underestimates it near567

the surface. We note that fog or very low-level clouds are strongly underestimated in the568

reanalyses (fog and clouds are both included in the cloud occurrence). We conclude that569

the ICON results match the observations better than the reanalyses in this metric.570

For all observations considered (Fig. 6a), the data show cloud occurrence peaking571

near the surface, whereas the models show a higher peak (at about 500 m). The mod-572

els generally underestimate the total cloud fraction by 10–30% and show a strong drop573

in cloud occurrence near the surface, which is not identified in the observations. ICON574

and ERA5 overestimate cloud occurrence at their peak (between 0 and 1 km). Above575

1 km, ICON and MERRA-2 underestimate cloud occurrence, but ERA5 is accurate to576

about 3% or less. The exaggerated peak in models is partly explained by the LCL dis-577
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Cyclonic situations

(a) ERA5 (2010–2013) (b) ICON (2021–2024)

Stability

(c) ERA5 (2010–2013) (d) ICON (2021–2024)

Figure 5. Geographical distribution of (a, b) cyclonic days and (b, d) strong stability

(LTS ≥ 12 K) time steps in (a, c) ERA5 in years 2010–2013 (inclusive) and (b, d) ICON in

model years 2021–2023 (free running). Cyclonic days are expressed as a fraction of the number of

days with cyclonic activity, defined as grid points located within a double radius of any cyclone

on a given day (UTC), as identified by CyTRACK. The voyage tracks and the point of the MI-

CRE campaign are also shown.
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tribution, which peaks about 300 m higher in the models than in the observations (near578

the surface), although this is not very pronounced. This is indicative of near-surface RH579

often being close to saturation in the observations but not in the models (Fig. S1b). There580

are multiple possible reasons for this bias, such as how the statistical distribution of RH581

within a grid cell is represented in the models, the air–sea moisture flux parameteriza-582

tion, or weaker stability in the models, which can cause more boundary mixing across583

heights and thus lower near-surface RH.584

When the data are subset by latitude (Fig. 6b, c), we see that the low-latitude SO585

zone (40–55°S) displays a stronger peak of cloud occurrence near the surface than the586

high-latitude SO zone (between 55°S and the Antarctic coast), and this could be because587

higher latitudes have a greater prevalence of weakly stable profiles (Fig. 5c, d), although588

more stable profiles populate regions south of 65°S close to the Antarctic coast. Cyclonic589

activity is also stronger in high-latitude SO, which is typically associated with shallow590

or deep convection rather than the very stable stratification necessary for fog formation.591

The low- and high-latitude SO zones show similar biases in models as in the general case,592

but ERA5 does not overestimate the peak in the low-latitude SO zone (very low-level593

cloud occurrence is still strongly underestimated).594

When the data are subset as either cyclonic or non-cyclonic situations (Fig. 6d, e),595

we see that the cyclonic situations have a larger amount of observed cloudiness, includ-596

ing peak and total cloud fraction, by about 10%. In the cyclonic situations, the model597

vertical profiles of cloud occurrence compare well with observations, but they peak higher598

by about 200 m and are larger by about 8%. The reanalyses tend to underestimate cloud599

occurrence above 1 km by about 5% and near the surface by about 15%. Non-cyclonic600

situations are similar to the general case, also because they form the majority of ana-601

lyzed profiles (83%).602

When the data are subset by stability (Fig. 6f, g), as defined in Section 2.10, we603

see that in situations of strong stability, cloud occurrence peaks strongly near the sur-604

face in observations, compared to situations of weak stability, where the peak is more605

diffuse between 0 and 1 km. Physically, conditions of strong stability are associated with606

the formation of advection fog, such as in situations of warm air advection from the north607

over a colder sea surface, thus inducing fog formation by cooling of the warm and hu-608

mid air by the cold surface. In situations of strong stability, the models have smaller bi-609

ases than in weak stability, with an overestimated peak of up to 12%, underestimated610

cloud occurrence above 1 km by up to 5%, and underestimated cloud occurrence near611

the surface by about 10% in the reanalyses but not ICON. In situations of weak stabil-612

ity, the bias in ICON is very pronounced, with a much larger peak in cloud occurrence613

at about 500 m; the reanalyses underestimate cloud occurrence below 1 km, especially614

near the surface; and MERRA-2 underestimates cloud occurrence more strongly at al-615

most all heights.616

In all subsets, even when the models overestimate cloud occurrence at some alti-617

tudes, they always substantially underestimate the total cloud fraction. ICON can be618

generally characterized as substantially overestimating cloud occurrence below 1 km and619

underestimating above, underestimating the total cloud fraction, and showing the great-620

est biases in conditions of weak stability and non-cyclonic conditions. ICON also has a621

peak cloud occurrence at higher altitudes than observations (500 m vs. near the surface),622

and correspondingly, its LCL tends to be higher. MERRA-2 can be generally charac-623

terized as underestimating cloud occurrence at nearly all altitudes as well as the total624

cloud fraction, but mostly above and below 500 m (the peak at 500 m is well represented).625

MERRA-2 displays the largest errors relative to observations in the low-latitude SO zone626

and under weak stability. ERA5 can be generally characterized as representing cloud oc-627

currence correctly above about 1.5 km, overestimating between 500 m and 1 km, but un-628

derestimating very low-level cloud occurrence. The total cloud fraction is strongly un-629

derestimated in all subsets. ERA5 has a tendency towards greater cloud underestima-630
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tion in the low-latitude SO zone and under weak stability; conversely, it overestimates631

the peak of cloud occurrence at 500 m in the high-latitude SO zone and under strong632

stability.633

3.3 Daily Cloud Cover634

We also analyzed the daily cloud cover (total cloud fraction) distribution. This is635

a measure of cloudiness, irrespective of height, calculated over the course of a day (UTC).636

A cloud detected at any height means that the lidar profile was classified as cloudy; oth-637

erwise, it was classified as a clear sky. When all profiles in a day are taken together, the638

cloud cover for the day is defined as the fraction of cloudy profiles in the total number639

of profiles. It is expressed in oktas (multiples of 1/8), reflecting the 3-hourly model out-640

put of MERRA-2 and ICON, i.e., 8 times per day. The same calculation is done for the641

lidar observations as for the simulated lidar profiles. We use the term “okta” indepen-642

dently of its use in instantaneous synoptic observations, and here it simply means 1/8643

(0.125) of the daily cloud cover.644

In Fig. 7 we show the results for the same subsets of data as in Section 3.2. Ob-645

servations display the highest proportion of high cloud cover values (5–8 oktas), peak-646

ing at 7 oktas. This pattern is not represented by ICON or either reanalysis. While ICON647

is closest to matching the observed distribution, it tends to be 1 okta clearer than the648

observations, peaking at 6 oktas, and substantially underestimating days with 8 oktas.649

Overall, the reanalyses show results similar to each other, underestimating cloud cover650

by about 2 oktas and strongly underestimating days with 7 and 8 oktas. Of the two re-651

analyses, MERRA-2 has slightly higher cloud cover than ERA5, by about 6% at 6 oc-652

tas, which makes it more consistent with observations.653

When analyzed by subsets, observations in the cyclonic subset show the highest654

cloud cover, with 8 oktas occurring on one half of such days (Fig. 7d). This sensitivity655

to cyclonic conditions is not observed in ICON or the reanalyses. Interestingly, clear sky656

days (0 oktas) also have a local maximum peaking at about 15% in this subset. When657

we contrast the low- and high-latitude zones, we see that the high-latitude zone tends658

to have greater cloud cover, peaking at 8 oktas (Fig. 7c). The high-latitude zone also has659

almost no clear sky or small cloud cover cases (0–4 oktas). ICON and the reanalyses rep-660

resent this characteristic of the distribution well for 0–3 oktas, but otherwise show bi-661

ases similar to the general case. One of the greatest biases is present in ERA5 in the sub-662

set of weak stability, in which ERA5 peaks at 3 oktas, while the observations peak at663

7 oktas and show negligible cloud cover below 5 oktas.664

3.4 Top of Atmosphere Radiation, Liquid and Ice Water Path665

In Fig. 6, we also show the mean outgoing SW and LW TOA radiation, whose cal-666

culation is described in Section 2.8. In observations, these come from daily mean CERES667

measurements averaged over the voyage tracks or a station location, whereas in the mod-668

els they come from daily means of TOA radiation in the model output averaged over the669

same location and time periods.670

In the general case (Fig. 6a), ICON and ERA5 underestimate the outgoing SW ra-671

diation by 22 and 20 Wm−2 (respectively), and MERRA-2 overestimates it by 6 Wm−2.672

While in ICON and ERA5, this is in line with the underestimated total cloud fraction673

of 10% and 22% (respectively); in MERRA-2, the opposite result is expected from the674

underestimated total cloud fraction of about 20%. Neglecting the direct radiative effects675

of sea and aerosol, this is only possible if the albedo of cloudy areas is overestimated, com-676

pensating for the lack of cloudy areas.677

We note that the radiative transfer calculations used in the lidar simulator mean678

that the impact of both cloud phase and cloud fraction are convolved to produce the cloud679
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Figure 6. Cloud occurrence by height calculated as the average of all voyages and stations

and lifting condensation level (LCL) distribution. The LCL is derived from radiosonde profiles

and equivalent model profiles, which were not available for all voyages and times. The total cloud

fraction (CF), average outgoing shortwave (SW) and longwave (LW) radiation, and the relative

frequency of occurrence (RFO) are shown. The bands are the 16th–84th percentile, calculated

from the set of all voyages and stations.
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Figure 7. Daily total cloud fraction histograms calculated as the average of all voyage and

station histograms. The total cloud fraction of a day (UTC) is calculated as a fraction of cloudy

(based on the cloud mask) observed (OBS) or simulated lidar profiles. The models and subsets

are as in Fig. 6.
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mask. Therefore, the cloud occurrence is not affected by any cloud phase biases as long680

as the cloud is optically thick enough to be detected and the laser signal is not too at-681

tenuated. A combination of underestimated total cloud fraction and overestimated out-682

going SW at TOA is indicative of an overestimated cloud albedo (in cloudy areas) due683

to either cloud liquid and ice water content, cloud phase, droplet or ice crystal size dis-684

tribution, shape or orientation of ice crystals, cloud overlap, or their combination. The685

influence of cold clouds is likely second-order due to the much larger typical effective ra-686

dius of ice crystals than cloud droplets.687

In contrast to SW radiation, the models have much smaller LW radiation biases,688

which is expected due to the prevailing low-level clouds having similar temperatures as689

the surface. Roh et al. (2021) also found LW biases to be much lower than SW biases690

in DYAMOND models over the tropical Atlantic Ocean. In ICON, the outgoing LW ra-691

diation is overestimated by 5% (Fig. 6a). This is likely caused by an underestimated to-692

tal cloud fraction exposing a larger sea surface area to cooling to space, which is typi-693

cally warmer than the atmospheric temperature at 0–2 km, where most of the clouds are694

located. In the MERRA-2 and ERA5 reanalyses, the LW biases are also slightly posi-695

tive, 4 and 5 Wm−2, respectively. This is again in line with the underestimated total cloud696

fraction by about 20%. However, if the clouds are too thick, as expected from the SW697

results, this might also provide a compensating effect, in which too small a cloud area698

is counteracted by greater optical thickness in the LW spectrum, thus reducing the out-699

going LW radiation more in thick relative to thinner clouds. For thin clouds, the out-700

going TOA LW radiation originates both from the warmer surface (partly blocked by701

the clouds) and the clouds, whereas for thick clouds, the outgoing TOA LW radiation702

originates mostly from the colder-than-surface clouds.703

In all the subsets (Fig. 6b–g), the same type of biases are observed, namely the out-704

going SW radiation is underestimated in ICON and ERA5 and overestimated in MERRA-705

2, and the outgoing LW radiation is overestimated in all the models. Even though the706

total cloud fraction is higher by 6% over the high-latitude SO than the low-latitude SO,707

the outgoing SW radiation is much greater by 41 Wm−2, implying a much greater cloud708

albedo (of cloudy areas) over the high-latitude SO. ICON has little difference in the to-709

tal cloud fraction between low- and high-latitude SO, but greater outgoing SW radia-710

tion by 14 Wm−2 over the high-latitude SO, likely due to thicker clouds under deeper711

convection in less stable and more cyclonic conditions relative to the low-latitude SO.712

In contrast, the reanalyses showed both greater total cloud fraction and outgoing SW713

radiation over the high-latitude SO compared to the low-latitude SO.714

Fig. 8 shows the SW and LW radiation as histograms and their corresponding av-715

erages. ERA5 and ICON overestimate outgoing SW near 80 Wm−2 (Fig. 8a), which prob-716

ably relates to clear sky situations, as expected from the underestimated cloud fraction.717

They also underestimate the highly reflective situations above 200 Wm−2. MERRA-2718

exhibits the too-few-too-bright problem in terms of overestimating SW reflectivity around719

290 Wm−2, given that the total cloud fraction in MERRA-2 is strongly underestimated.720

The LW distribution shows that all of the models overestimate outgoing LW (Fig. 8b),721

which is expected from the underestimated cloud fraction, exposing more of the warmer722

ocean surface relative to colder clouds.723

Fig. S3 shows the LWP and IWP distributions as histograms and their correspond-724

ing averages. The LWP and IWP are calculated from the mass of water in the column725

divided by the area of the column, i.e., not just the area of the cloudy portion of the col-726

umn, as in some definitions. The available observational satellite reference for the LWP727

and IWP over high latitudes is unfortunately very uncertain due to a high solar zenith728

angle and the inability of passive visible and infrared retrievals to detect phase below729

the cloud top of mixed-phase clouds (Huang et al., 2006; Greenwald, 2009; Seethala &730

Horváth, 2010; Eliasson et al., 2011; Duncan & Eriksson, 2018; Khanal et al., 2020), and731

this limits our comparison. The LWP distribution shows that all models overestimate732
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Figure 8. Histograms and averages of outgoing (a) SW and (b) LW radiation at TOA

in CERES SYN1deg observations (OBS), ICON, MERRA-2, and ERA5. All campaigns are

weighted equally. The statistics are calculated from daily mean values corresponding to each time

step and geographical location of the voyage tracks and stations.

cases with a near-zero LWP (Fig. S3a), which relates to the underestimated total cloud733

fraction. MERRA-2 shows quite overestimated high-LWP situations, which is most likely734

related to the too-few-too-bright problem of simulating lower total cloud fraction but clouds735

with a higher LWP to compensate. The IWP (Fig. S3b) is somewhat less important ra-736

diatively than LWP because of the typically larger and less numerous hydrometeors. Sim-737

ilarly to the LWP, the models overestimate situations with a near-zero IWP. ERA5 is738

otherwise simulating the IWP distribution well, but ICON and MERRA-2 underestimate739

the IWP. In the cloudy situations (Fig. S3c, d), it can be seen more distinctly that MERRA-740

2 overestimates moderate (0.05–0.15 kg m−2) and high LWP (over 0.15 kg m−2), and741

ERA5 and ICON underestimate moderate LWP. ICON also overestimates high LWP,742

resulting in overestimated average LWP.743

3.5 Relative humidity and potential temperature profiles744

In order to examine the potential link in the cloud biases to the local physical con-745

ditions, we analyzed the radiosonde profiles available from the campaigns (Section 2.1).746

The profiles were partitioned into the same subsets as above (Sections 3.2 and 3.3). We747

focus on comparing θv and RH, being one of the primary factors affecting shallow con-748

vection and the associated low-level cloud formation and dissipation. The observed and749

model profiles of θv and RH are shown in Fig. 9.750

Overall, the mean θv is accurate to within 0.5 K in ICON and MERRA-2, except751

for ICON being colder by up to 2.5 K in the mid-to-high troposphere (less stable) (Fig. 9a).752

Larger differences exist, however, in the 40–55°S zone, where ICON is colder by about753

5 K at 5 km (Fig. 9b). In other subsets, the bias is relatively small. MERRA-2 and ERA5754

are very close to the observations, possibly due to a high accuracy of assimilation of this755

quantity. Notably, the variability of θv (as represented by the percentiles) is much smaller756

in ICON than in the observations. This indicates that this model’s internal variability757

in the lower-tropospheric thermodynamic conditions in the SO is smaller than in real-758

ity.759

RH displays much larger biases. In all subsets, ICON is too humid in the first 1 km760

by about 5%, but very accurate above, except for the 40–55°S zone and conditions of weak761

stability (Fig. 9b, g), where it is too dry between about 1 and 3 km. Even though RH762

measured by radiosondes in the first 100 m is not very different between the observations763
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Figure 9. Virtual potential temperature (θv) and relative humidity (RH) determined from

radiosonde launches and co-located profiles in ICON, ERA5, and MERRA-2 in subsets as in

Fig. 6. The solid lines are the average calculated from the averages of every individual voyage

and station. The bands span the 16th–84th percentiles, calculated from the distribution of the

voyage and station averages. Shown is also the relative frequency of occurrence and the number

of profiles in each subset.
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Figure 10. Histogram of lower tropospheric stability calculated from the observed radiosonde

profiles and the corresponding model profiles. All campaigns are weighted equally.

and the models (Fig. 9a), near-surface (2-m) RH at the radiosonde launch locations is764

much greater in the observations, most often close to 100%, unlike in the models, where765

85% tends to be the most common (Fig. S1b). This also explains why LCL is much more766

frequently located at the surface in the observations than in the models (Fig. 6a). LCL767

is fully determined by near-surface temperature, near-surface RH, and surface pressure.768

Fig. S4 shows θv and RH profiles for profiles containing fog, cloud at 500 m, and769

cloud at 1.5 km. These situations are characterized by particular cloud biases as iden-770

tified in the lidar cloud occurrence analysis. The rationale is to examine θv and RH as-771

sociated with these situations. Foggy situations are characterized by a rapid increase of772

θv with height and an observed average RH of about 90% near the surface (Fig. S4a).773

In contrast, the models simulate higher RH in the first 100 m under foggy conditions by774

several percentage points. In situations with clouds occurring at 500 m, θv is relatively775

constant between the surface and 500 m (Fig. S4b), as expected for convectively driven776

clouds. The observed RH peaks at 500 m at about 90%. The models, however, simulated777

higher RH between the surface and 500 m under these conditions. ICON and ERA5 show778

a stronger decrease of RH above this height than observations, and ERA5 shows more779

strongly stable stratification. Unlike the foggy and 500-m cloud situations, situations with780

clouds at 1.5 km do not have a flat θv with height. This indicates that, unlike the for-781

mer, clouds at 1.5 km are not (or not as strongly) convectively driven. As expected, RH782

in these situations peaks at 1.5 km at about 85% in observations. In the models, this783

peak is much less pronounced.784

Fig. 10 shows the histogram of LTS calculated from all radiosonde profiles and the785

corresponding profiles in the models. It can be seen that ICON substantially underes-786

timates the occurrence of cases of strong stability above 16 K while overestimating the787

cases of moderate stability (8 to 16 K). When considered together with the cloud occur-788

rence results presented in Fig. 6, we see that since ICON is biased towards weak stabil-789

ity, it overrepresents cloud profiles strongly peaking at 500 m (Fig. 6g) over cloud pro-790

files with fog or very low-level cloud (Fig. 6f). This can be a physical reason for its over-791

all positive bias in cloud at 500 m (Fig. 6a) instead of the observed cloud occurrence pro-792

file peaking near the surface. The reanalyses simulate the LTS distribution well except793

for a slight underestimation of LTS.794
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Figure 11. Relative humidity histograms calculated from the observed radiosonde profiles

and the equivalent model profiles for (a) all bins, (b) clear bins, and (c) cloudy bins, determined

from the lidar cloud mask. Model histogram values are relative to observations. The histogram

values are normalized to 100% for each level separately. All campaigns are weighted equally.

Fig. 11 shows RH histograms calculated from the radiosonde observations and equiv-795

alent profiles in the models (shown as anomalies relative to the observations), calculated796

for all, clear, and cloudy bins, based on the lidar observations and the simulated lidar797

backscatter in the models. Here, we show only the first 2 km to concentrate on the iden-798

tified cloud biases seen at these heights. We can see several notable features. The mod-799

els simulate progressively fewer high-RH (>90%) bins above the ground (Fig. 11b–d).800

This can be related to either ice nucleation happening in the models, which requires smaller801

RH for saturation, or the grid cell size in the models, which requires lower grid cell av-802

erage RH than 100% for saturation to occur in a fraction of the grid cell. The models803

also tend to simulate more clear bins than observations for RH between 80 and 100%804

between the ground and about 1 km (Fig. 11f–h). In the observations, these values of805

RH are associated with cloudy bins (Fig. 11i). Conversely, the models predominantly as-806
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sociate only RH very close to 100% with cloudy bins at these heights (Fig. 11j–l). This807

may be one of the main reasons for the identified cloud or fog biases near the ground.808

A possible explanation is that cloud droplets are able to form or persist at RH between809

90 and 100% at these heights over the SO. This could be due to abundant hygroscopic810

nuclei such as sea salt (Zieger et al., 2017; Kong et al., 2018) or droplet generation from811

sea spray in the common high swell and high wind speed conditions over the SO (Revell812

et al., 2019; Hartery et al., 2020). Stratus fractus or other broken clouds could also lead813

to less than 100% RH when averaged over the size of the vertical bins (up to 30 m in some814

of the radiosonde profiles).815

Fig. S5 shows histograms the same as the previous figure, but for θv. They show816

a more complex picture, characterized by a central peak at about 0°C near the surface,817

increasing to about 5°C at 2 km (Fig. S5a). For cloudy bins, the central peak is gener-818

ally more constant with height and even shows a minimum in θv at about 500 m (Fig. S5i).819

This is indicative of convection being associated with clouds at these heights, which re-820

sults in flat θv profiles. In the reanalyses, in the first 200 m, values slightly above 0°C821

are associated with more clear bins than in observations, and values slightly below 0°C822

with fewer (Fig. S5g–h). Conversely, the opposite is true for cloudy bins (Fig. S5k–l).823

Situations with 0°C near-surface air temperature might occur predominantly when an824

open ocean surface keeps the near-surface air temperature close to 0°C under otherwise825

colder air mass conditions, such as under cold advection. ICON displays a notable bias826

above about 1 km, where the central peak is strongly underestimated (Fig. S5j). Instead,827

these heights and values of θv are more associated with clear bins (Fig. S5f). This might828

be related to the strong underestimation of cloud occurrence at these heights.829

4 Limitations of this Study830

Let us consider the main limitations of the presented results. The spatial cover-831

age of our dataset does not include most parts of the Indian Ocean and Pacific Ocean832

sectors of the SO. Even though climatological features of the SO are typically relatively833

uniform zonally, variations exist, such as those related to the Antarctic Peninsula and834

the southern tip of South America. The voyages were mostly undertaken in the Austral835

summer months and only rarely in the winter months, due to the poor accessibility of836

this region during winter. Therefore, our results are likely representative of summer and,837

to a lesser extent, spring and autumn conditions. Ship access to sea-ice-covered areas838

of the SO is also limited. Cloud regimes and phases in the region are seasonally variable839

(Danker et al., 2022).840

The time period of ICON is relatively short, with only four full years of simulation841

available. Moreover, the simulation is free-running and ocean-coupled, which means that842

observations had to be temporally mapped to this time period (at the same time rela-843

tive to the start of the year) for the comparison. For these reasons, one can expect the844

results to be slightly different due to reasons unrelated to model biases, such as differ-845

ent weather conditions, partially accounted for by the cyclone and stability subsetting,846

and the phase of climate oscillations, such as the ENSO in the observations and ICON.847

The interannual variability in cloud occurrence in ICON can be seen in Fig. S2, where848

each year in ICON is represented by a separate line. As could be expected, the interan-849

nual variability tends to be substantially smaller than the biases and thus is unlikely to850

have a strong impact on the main findings.851

It would be possible to use short-term ICON simulations for almost one-to-one com-852

parison to observations. However, here we focus on long-term biases, which are statis-853

tically more robust. Our analysis is, therefore, complementary to shorter process-level854

studies. The reanalyses pose the difficulty of determining how much assimilated obser-855

vations impact the results. While one might expect temperature and RH profiles to be856

well represented in the reanalyses due to assimilation of satellite data, we see that this857
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is not always the case in comparison with the radiosonde profiles and near-surface me-858

teorological observations. This could be due to the limited vertical accuracy of satellite859

sounding measurements and obscuration by clouds. Despite the assimilation, the cloud860

and radiation biases are often comparable to or greater than in the free-running model.861

Ground-based lidar observations are affected by attenuation by thick cloud layers,862

and for this reason the results are most representative of boundary layer clouds, while863

higher-level clouds are only occasionally visible to the lidar when boundary layer clouds864

are not present. Ground-based lidar observations can be regarded as complementary to865

satellite lidar observations for the evaluation of low-level clouds, which are predominant866

in this region, while mid- and high-level clouds are likely better sampled by satellite ob-867

servations (McErlich et al., 2021). Ground-based observations are, however, complicated868

by precipitation, and satellite observations can also be used if the effect of overlapping869

clouds is carefully eliminated. Lidar retrievals close to the surface (∼100 m) are affected870

by uncertainties related to incomplete overlap, signal saturation (dead time), and after-871

pulse effect corrections (Kuma et al., 2021).872

Supercooled liquid clouds (liquid clouds under subzero temperature) commonly oc-873

cur over the SO. In our analysis of the LWP and IWP, we see that both phases are abun-874

dant. Because liquid water droplets are typically smaller and more numerous than ice875

crystals in cold clouds, they attenuate a greater amount of the lidar radiation. Clouds876

with a relatively modest optical thickness of 1.7 can attenuate the lidar signal for a de-877

tection at 2 km using an instrument with noise properties like the Vaisala CL31 (Sec-878

tion 2.4). While supercooled liquid clouds and their attenuation are accounted for by the879

lidar simulator, they can strongly attenuate the signal and cause artificially low values880

of cloud occurrence at higher altitudes. For example, we found that cloud occurrence at881

1.5 km is underestimated in ICON and underlying clouds are overestimated. However,882

this can also mean that clouds at 1.5 km are present in the model, but the signal is too883

attenuated by the lower clouds in the model, but not in the observations, where the un-884

derlying clouds are not as pronounced.885

We have attempted to remove lidar profiles with precipitation (about 26% of all886

profiles), which could not be properly simulated with the lidar simulator (Section 2.9).887

However, the approach was limited by the relatively low sensitivity of the ANN (65%)888

and the fact that we had to choose a fixed threshold for surface precipitation flux in the889

models, which might not correspond to detection by the ANN applied to observations.890

We also made no attempt to remove profiles with precipitation that did not reach the891

surface. The above reasons may result in an artificial bias in the comparison, though we892

expect this to be much smaller than the identified model biases.893

Subsetting by cyclonic activity and stability is done based on the ERA5 data. As894

we have shown, the reanalyses also suffer from biases in near-surface and upper-level quan-895

tities. Therefore, the subsetting is limited by the accuracy of the ERA5 pressure field,896

near-surface temperature, and temperature at 700 hPa. Near-surface ship observations897

are affected by the ship structures as well as the variable height above sea level at which898

the measurements are taken. The accuracy of radiosonde measurements in the first tens899

of meters from the surface is also likely affected by the ship environment, such as tur-900

bulence generated by ship structures and the ship exhaust. Vertical averaging of the ra-901

diosonde data can result in lower RH near saturation due to averaging of drier and moister902

layers together. For example, some of the RV Polarstern radiosondes are available in ver-903

tical resolution of about 20–30 m. As mentioned in Section 3.4, the satellite retrieval of904

the LWP and IWP is affected by large biases, especially over high latitudes, which lim-905

its our comparison with the models.906
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Table 3. Summary of the main biases. Values are relative to observations and rounded to the

nearest multiple of 5, except for daily cloud cover and RH, which are rounded to the nearest

integer. The best-performing value is marked in bold. Abbreviations: boundary layer (BL), rel-

ative humidity (RH), shortwave (SW), longwave (LW), liquid water path (LWP), ice water path

(IWP), and lifting condensation level (LCL).

ICON MERRA-2 ERA5

Total cloud fraction (%) -10 -20 -20
Daily cloud cover (okta) -1 -2 -2
Fog (%) 0 -10 -10
BL clouds (at ∼500 m) 15 0 5
Mid-lev. clouds (at ∼1.5 km) -5 -5 0
RH at 500 m 2 2 0
SW (W m−2) -25 5 -20
LW (W m−2) 5 5 5
LWP (g m−2) 10 20 -15
IWP (g m−2) -30 -30 -15
LCL distribution peak (m) 300 300 300

5 Discussion and Conclusions907

We analyzed a total of about 2400 days of lidar and 2300 radiosonde observations908

from 31 campaigns and the Macquarie Island sub-Antarctic station, covering the Atlantic,909

Australian, and New Zealand sectors of the SO over 10 years. This dataset, together with910

the use of a ground-based lidar simulator, provided a comprehensive basis for evaluat-911

ing SO cloud and thermodynamic profile biases in the GSRM ICON and the ERA5 and912

MERRA-2 reanalyses. Our analysis provides a unique evaluation perspective, comple-913

mentary to satellite observations for evaluating boundary layer clouds and fog, which are914

predominant in this region. We did not, however, analyze the cloud phase based on ground-915

based observations. Cloud phase can have a strong impact on the SW radiative trans-916

fer due to larger and therefore less numerous hydrometeors in cold and mixed-phase clouds917

(for the same amount of water), scattering much less SW radiation. Especially, the un-918

derestimation of fog or very low-level clouds is very substantial in the reanalyses, and919

we showed that this relates to cloud and fog formation or persistence at RH between 80920

and 100% in the boundary layer in the observations, while in models RH values less than921

100% are associated with clear bins. We subset the dataset by low and high latitude SO922

bands, cyclonic activity, and stability in order to identify how these conditions influence923

the biases. The main identified biases are summarized in Table 3 and discussed below.924

Our main finding corroborates previous findings of large boundary layer cloud bi-925

ases in models and their subsequent effect on the radiative transfer. For example, low-926

and mid-level clouds in the cold-air sector of cyclones were identified as being respon-927

sible for most of the SW bias by Bodas-Salcedo et al. (2012). Precipitation in intense928

extratropical oceanic cyclones is projected to increase with future warming (Kodama et929

al., 2019). The understanding of radiation biases was refined by Bodas-Salcedo et al. (2014),930

who highlighted that the SW bias was associated with an incorrectly simulated mid-level931

cloud regime, which occurred in regions where clouds with tops at mid-level and low lev-932

els occurred. Ramadoss et al. (2024) have shown that in precipitating conditions, km-933

scale ICON has SW radiative biases associated with the overrepresentation of the liq-934

uid phase at the cloud top in low stratocumulus clouds in a short (48-h) simulation over935

the SO. Fiddes et al. (2024) suggested that biases in the LWP are the largest contrib-936

utor to the cloud radiative bias over the SO. Our general finding applies to the new GSRM937

ICON, but the biases are lower than in the reanalyses in several aspects, namely the to-938
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tal cloud fraction, daily cloud cover, fog, and the LWP (Table 3), despite the reanaly-939

ses having the advantage of assimilation of the observed meteorological conditions. ICON,940

on the other hand, performs worse than the reanalyses in clouds and RH at 500 m, mid-941

level clouds (here defined as 1.5 km), outgoing SW radiation, and the IWP. ICON has942

the advantage of a much higher spatial resolution and, to a limited extent, explicit cal-943

culation of traditionally subgrid-scale processes such as convection. These are incomplete944

due to the lack of sub-grid scale convection parameterization below the km scale. The945

lack of parameterized subgrid-scale convection in ICON was a pragmatic choice in the946

model development, but it can be a source of substantial cloud biases even at the 5-km947

resolution.948

We show that relative to ERA5, the distribution and strength of cyclonic activity949

over the SO is well represented in ICON, but it displays lower values of LTS. The lat-950

ter is also manifested in the radiosonde profile comparison (Fig. 10), showing that the951

θv profiles in ICON are less stable than in the observations. It is also manifested in near-952

surface air temperature, which is overestimated in the 1–7°C range at the radiosonde launch953

locations (Fig. S1a). The underestimated LTS is linked to the overestimated cloud peak954

at 500 m in the lidar cloud occurrence comparison (Fig 6f–g). It might also be interact-955

ing with the cloud inhomogeneity factor employed in ICON (Section 2.5), resulting in956

lower cloud liquid water used in radiative calculations, hence decreased outgoing SW ra-957

diation. Based on the θv profile analysis, clouds at 500 m are predominantly convectively958

driven, and it is therefore expected that a model bias towards weak stability results in959

an increased cloud formation at this level. The underestimation of clouds above 1 km960

in ICON does not have a clear physical reason in our analysis and is likely partially or961

fully caused by stronger obscuration of the simulated lidar signal by the underlying and962

overestimated clouds in ICON at around 500 m.963

The campaigns show remarkably similar biases in cloud occurrence by height in the964

lidar comparison (Fig. S2), which indicates that common underlying causes for the bi-965

ases exist regardless of longitude and season. ICON underestimates the total cloud frac-966

tion by about 10%, with an overestimation of clouds below 1 km and an underestima-967

tion of clouds above 1 km. The reanalyses underestimate the total cloud fraction by about968

20%. ERA5 overestimates clouds below 1 km but underestimates very low-level clouds969

and fog. ICON strongly overestimates the peak of cloud occurrence at about 500 m. This970

can be explained by the radiosonde comparison, showing that it is too moist at around971

this height (Fig. 9a); has underestimated LTS (Fig. 5 and 10), permitting shallow con-972

vection to this height; and has underestimated near-surface RH (Fig. S1), resulting in973

higher LCL (Fig. 6). Similar to our results for mid-level clouds, Cesana et al. (2022) showed974

that CMIP6 models also tend to underestimate cloud occurrence above 2 km over the975

SO, although their analysis in this case was limited to liquid clouds.976

The inability of the models to simulate fog can be linked to various biases identi-977

fied in our analysis. Near-surface RH is too low in the models (Fig. S1), potentially due978

to low moisture flux from the surface and too effective boundary layer mixing. Near-surface979

temperature is also too high in ICON, and it can be expected that fog formation occurs980

in low near-surface temperature conditions when a warm and moist air mass is cooled981

by the surface to the saturation point. Fig. S4 shows that fog occurs under highly strat-982

ified conditions. The underestimated LTS in ICON (and to a lesser extent in the reanal-983

yses; Fig. 10) indicates that the models are biased to weaker stability, thus having less984

favorable conditions for fog formation and persistence. The RH distribution in cloudy985

bins (Fig. 11) also suggests that in observations, very low-level hydrometeors can occur986

under lower RH in observations than in the models. This could be due to high availabil-987

ity of cloud condensation nuclei (CCN) or ice nucleating particles (INPs) or due to hy-988

drometeors and aerosols formed via sea spray under high swell and wind conditions. These989

parametrizations are likely very uncertain in the models in the SO due to the sparsity990

of reference data. Kawai et al. (2016) have shown that marine fog has some of the high-991
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est concentrations globally over the SO, and SO marine fog has a greater occurrence in992

winter. They conclude that marine fog is related to large-scale circulation and warm ad-993

vection, and this is expected to change in a warming climate.994

Compared to lidar observations, the daily cloud cover tends to be about 1 okta lower995

in ICON and 2 oktas lower in the reanalyses. Conditions of weak stability are associated996

with some of the greatest biases, especially in ERA5. The models also underestimate the997

cloud cover very strongly in cyclonic conditions, which are very cloudy in the observa-998

tions (8 oktas) but much less so in the models. Similarly, McErlich et al. (2023) found999

a 40% underestimation of cloud liquid water in cyclones over the SO in ERA5, despite1000

total column water vapor being simulated much more accurately (5% underestimation).1001

The radiosonde observations indicate that the LCL is too high in ICON and reanal-1002

yses, which is probably responsible for the higher peak of clouds in the models and the1003

lack of very low-level clouds and fog. Notably, ICON exhibits smaller internal variabil-1004

ity in θv than the radiosonde observations. The analysis of the LWP and IWP (Fig. S3)1005

shows that both phases are present in observations in about equal amounts. The mod-1006

els show diverse biases, the most pronounced being overestimation of high-LWP values1007

in MERRA-2 and overestimation of cases with a near-zero LWP and IWP in all mod-1008

els. All models tend to compensate for the overestimated cases of a near-zero LWP with1009

more high-LWP values to get a mean LWP that is either less (but close) to the obser-1010

vations (ERA5) or higher than the observations (ICON and MERRA-2). The IWP is1011

underestimated in all of the models. In the case of ICON and MERRA-2, the mean IWP1012

was underestimated and LWP overestimated, indicating that the models produce too much1013

liquid and not enough ice phase. This is in contrast with previous findings of the lack1014

of supercooled liquid over the SO in other models. If the liquid phase is overestimated1015

relative to the ice phase, one would expect underestimated cloud SW reflectivity due to1016

a larger number of smaller hydrometeors for the same amount of water. Cloudy areas1017

would then appear brighter in the SW spectrum. This can contribute to the too few, too1018

bright bias, i.e., the overestimated brightness of cloudy areas compensates for the lower1019

total cloud fraction in the models. As mentioned in Section 3.4, the LWP and IWP are,1020

however, affected by the high uncertainty of the satellite retrievals.1021

The relationship between cloud biases and radiation has a number of notable fea-1022

tures. MERRA-2 exhibits the too-few-too-bright bias previously identified in models. In1023

our results, this is characterized by overestimated outgoing TOA SW radiation, while1024

at the same time total cloud fraction is underestimated based on the ground-based li-1025

dar observations. On the other hand, this relationship is not present in ICON or ERA5.1026

ICON predicts smaller outgoing TOA SW radiation and smaller total cloud fraction than1027

observations, and the deficit of outgoing TOA SW radiation is approximately propor-1028

tional to the deficit of the total cloud fraction. While this might be a welcome feature1029

and an improvement over previous models, it does mean that the outgoing TOA SW ra-1030

diation is overall underestimated instead of being compensated by a higher cloud albedo.1031

This can, of course, lead to undesirable secondary effects such as overestimated solar heat-1032

ing of the sea surface, among other factors responsible for SO SST biases in climate mod-1033

els (Q. Zhang et al., 2023; Luo et al., 2023; Hyder et al., 2018). In contrast with our re-1034

sults, A. J. Schuddeboom and McDonald (2021) showed that CMIP6 models tend to over-1035

estimate a stratocumulus cloud regime over the SO.1036

Our results imply that SO cloud biases are a substantial issue even in the km-scale1037

resolution ICON and the reanalyses. More effort is therefore needed to improve the model1038

cloud simulations in this understudied region. We see that while the ICON is superior1039

to the coarser reanalyses in some aspects (Table 3), it is affected by cloud biases large1040

enough to cause important radiative biases. Parts of the GSRM relevant to low clouds,1041

however, do not benefit from the higher resolution, such as cloud microphysics, unresolved1042

clouds smaller than the grid cell, and turbulence. Cloud biases have also been shown to1043

be a persistent issue in other GSRM models (Seiki et al., 2022).1044
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We suggest the following avenues for future research. Evaluation of ocean–atmosphere1045

heat, moisture, and momentum fluxes with in-situ observations over the SO and com-1046

parison of GSRM simulations with large-eddy simulations in process-oriented studies;1047

evaluation of the DYAMOND project simulations in a similar manner as performed here1048

(for models that provide the necessary fields); and combining active satellite sensors such1049

as the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP)1050

on CALIPSO and Atmospheric Lidar [ATLID; Hélière et al. (2017)] on the Earth Clouds,1051

Aerosols and Radiation Explorer [EarthCARE; Illingworth et al. (2015)] satellite with1052

ground-based remote sensing could provide a more complete understanding of the cloud1053

biases across the whole troposphere. Cloud phase could be analyzed in more detail us-1054

ing the CALIPSO data, as was done by Roh et al. (2020) in a cloud-resolving model, or1055

using ground-based observations with the dual-polarization Mini Micro Pulse Lidar [Min-1056

iMPL; Spinhirne (1993); Campbell et al. (2002); Flynn et al. (2007)] data available from1057

the TAN1802 voyage. Guyot et al. (2022) and Whitehead et al. (2024) have developed1058

a machine learning method for identifying cloud phase from ceilometer data, and this1059

could be used with our ground-based lidar dataset to analyze the cloud phase. However,1060

their method would require a careful calibration with reference data coming from this1061

region.1062
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Bubnová, R., Hello, G., Bénard, P., & Geleyn, J.-F. (1995). Integration of the1183

fully elastic equations cast in the hydrostatic pressure terrain-following co-1184

ordinate in the framework of the ARPEGE/Aladin NWP system. Monthly1185

Weather Review , 123 (2), 515–535. doi: 10.1175/1520-0493(1995)123⟨0515:1186

IOTFEE⟩2.0.CO;21187

Caldwell, P. M., Terai, C. R., Hillman, B., Keen, N. D., Bogenschutz, P., Lin, W.,1188

. . . Zender, C. S. (2021). Convection-permitting simulations with the E3SM1189

global atmosphere model. Journal of Advances in Modeling Earth Systems,1190

13 (11), e2021MS002544. doi: 10.1029/2021MS0025441191

Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spin-1192

hirne, J. D., . . . Hwang, I. (2002). Full-time, eye-safe cloud and aerosol lidar1193

observation at atmospheric radiation measurement program sites: Instruments1194

and data processing. Journal of Atmospheric and Oceanic Technology , 19 (4),1195

431–442. doi: 10.1175/1520-0426(2002)019⟨0431:FTESCA⟩2.0.CO;21196

CERES author team. (2025). CERES SYN1deg Ed4A data quality summary. Re-1197

trieved from https://ceres.larc.nasa.gov/documents/DQ summaries/1198

CERES SYN1deg Ed4A DQS.pdf (last access: 26 June 2025)1199

Cesana, G. V., Khadir, T., Chepfer, H., & Chiriaco, M. (2022). Southern Ocean so-1200

lar reflection biases in CMIP6 models linked to cloud phase and vertical struc-1201

ture representations. Geophysical Research Letters, 49 (22), e2022GL099777.1202

doi: 10.1029/2022GL0997771203

–34–



manuscript submitted to JGR: Atmospheres

Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., . . . Zeng,1204

S. (2010). The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP).1205

Journal of Geophysical Research: Atmospheres, 115 (D4), D00H16. doi:1206

10.1029/2009JD0122511207

Danker, J., Sourdeval, O., McCoy, I. L., Wood, R., & Possner, A. (2022). Exploring1208

relations between cloud morphology, cloud phase, and cloud radiative proper-1209

ties in Southern Ocean’s stratocumulus clouds. Atmospheric Chemistry and1210

Physics, 22 (15), 10247–10265. doi: 10.5194/acp-22-10247-20221211

Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen,1212

C., . . . Sun, M. (2013). Geostationary enhanced temporal interpolation for1213

CERES flux products. Journal of Atmospheric and Oceanic Technology , 30 (6),1214

1072–1090. doi: 10.1175/JTECH-D-12-00136.11215

Doelling, D. R., Sun, M., Nguyen, L. T., Nordeen, M. L., Haney, C. O., Keyes,1216

D. F., & Mlynczak, P. E. (2016). Advances in geostationary-derived longwave1217

fluxes for the CERES synoptic (SYN1deg) product. Journal of Atmospheric1218

and Oceanic Technology , 33 (3), 503–521. doi: 10.1175/JTECH-D-15-0147.11219

Dorschel, B., & Rohardt, G. (2019). Continuous thermosalinograph oceanography1220

along POLARSTERN cruise track PS118 [Dataset]. PANGAEA. doi: 10.1594/1221

PANGAEA.9056081222

Duncan, D. I., & Eriksson, P. (2018). An update on global atmospheric ice esti-1223

mates from satellite observations and reanalyses. Atmospheric Chemistry and1224

Physics, 18 (15), 11205–11219. doi: 10.5194/acp-18-11205-20181225

DYAMOND author team. (2024). DYAMOND Initiative. Retrieved from1226

https://www.esiwace.eu/the-project/past-phases/dyamond-initiative1227

(Accessed on 19 June 2024)1228

ECMWF. (2019, 11). Copernicus Climate Change Service (C3S) (2017): ERA5:1229

Fifth generation of ECMWF atmospheric reanalyses of the global climate.1230

Copernicus Climate Change Service Climate Data Store (CDS). doi:1231

10.24381/cds.bd0915c61232

ECMWF. (2023). IFS documentation CY48R1. Shinfield Park, Reading, RG21233

9AX, United Kingdom: Author. Retrieved from https://www.ecmwf.int/en/1234

publications/ifs-documentation (Accessed on 4 December 2024)1235

Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., & John, V. O. (2011). As-1236

sessing observed and modelled spatial distributions of ice water path using1237

satellite data. Atmospheric Chemistry and Physics, 11 (1), 375–391. doi:1238

10.5194/acp-11-375-20111239

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &1240

Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project1241

Phase 6 (CMIP6) experimental design and organization. Geoscientific Model1242

Development , 9 (5), 1937–1958. doi: 10.5194/gmd-9-1937-20161243

Fahrbach, E., & Rohardt, G. (2011). Continuous thermosalinograph oceanography1244

along POLARSTERN cruise track ANT-XXVII/2 [Dataset]. PANGAEA. doi:1245

10.1594/PANGAEA.7601201246

Fiddes, S. L., Mallet, M. D., Protat, A., Woodhouse, M. T., Alexander, S. P., &1247

Furtado, K. (2024). A machine learning approach for evaluating Southern1248

Ocean cloud radiative biases in a global atmosphere model. Geoscientific1249

Model Development , 17 (7), 2641–2662. doi: 10.5194/gmd-17-2641-20241250

Fiddes, S. L., Protat, A., Mallet, M. D., Alexander, S. P., & Woodhouse, M. T.1251

(2022). Southern Ocean cloud and shortwave radiation biases in a nudged cli-1252

mate model simulation: does the model ever get it right? Atmospheric Chem-1253

istry and Physics, 22 (22), 14603–14630. doi: 10.5194/acp-22-14603-20221254

Flynn, C. J., Mendozaa, A., Zhengb, Y., & Mathurb, S. (2007). Novel polarization-1255

sensitive micropulse lidar measurement technique. Optics express, 15 (6), 2785–1256

2790. doi: 10.1364/OE.15.0027851257

Folk, M., McGrath, R., & Yeager, N. (1999). HDF: an update and future directions.1258

–35–



manuscript submitted to JGR: Atmospheres

In Ieee 1999 international geoscience and remote sensing symposium. igarss’991259

(cat. no.99ch36293) (Vol. 1, pp. 273–275). doi: 10.1109/IGARSS.1999.7734691260

Forbes, R. M., & Ahlgrimm, M. (2014). On the representation of high-latitude1261

boundary layer mixed-phase cloud in the ECMWF global model. Monthly1262

Weather Review , 142 (9), 3425–3445. doi: 10.1175/MWR-D-13-00325.11263
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Pérez-Alarcón, A., Coll-Hidalgo, P., Trigo, R. M., Nieto, R., & Gimeno, L. (2024).1733

CyTRACK: An open-source and user-friendly python toolbox for detecting1734

and tracking cyclones. Environmental Modelling & Software, 176 , 106027. doi:1735

10.1016/j.envsoft.2024.1060271736

Ramadoss, V., Pfannkuch, K., Protat, A., Huang, Y., Siems, S., & Possner, A.1737

(2024). An evaluation of cloud-precipitation structures in mixed-phase stra-1738

tocumuli over the southern ocean in kilometer-scale ICON simulations during1739

CAPRICORN. Journal of Geophysical Research: Atmospheres, 129 (18),1740

e2022JD038251. doi: https://doi.org/10.1029/2022JD0382511741

Revell, L. E., Kremser, S., Hartery, S., Harvey, M., Mulcahy, J. P., Williams, J., . . .1742

Schuddeboom, A. (2019). The sensitivity of Southern Ocean aerosols and cloud1743

microphysics to sea spray and sulfate aerosol production in the HadGEM3-1744

GA7.1 chemistry–climate model. Atmospheric Chemistry and Physics, 19 (24),1745

15447–15466. doi: 10.5194/acp-19-15447-20191746

Rew, R., & Davis, G. (1990). NetCDF: an interface for scientific data access. IEEE1747

Computer Graphics and Applications, 10 (4), 76–82. doi: 10.1109/38.563021748

Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu,1749

H.-C., . . . Nielsen, J. E. (2008). The GEOS-5 data assimilation sys-1750

tem—documentation of versions 5.0.1, 5.1.0, and 5.2.0 (Tech. Rep.). NASA1751

Center for AeroSpace Information, 7115 Standard Drive, Hanover, MD 21076-1752

1320, USA. Retrieved from https://gmao.gsfc.nasa.gov/pubs/docs/1753

–44–



manuscript submitted to JGR: Atmospheres

Rienecker369.pdf (Technical Report Series on Global Modeling and Data1754

Assimilation, Volume 27)1755

Rintoul, S. R. (2011). The Southern Ocean in the Earth system. In P. A. Berk-1756

man, M. A. Lang, D. W. H. Walton, & O. R. Young (Eds.), Science diplomacy:1757

Antarctica, science, and the governance of international spaces (pp. 175–1758

187). Washington, DC, USA: Smithsonian Institution Scholarly Press. doi:1759

10.5479/si.9781935623069.1751760

Roh, W., Satoh, M., Hashino, T., Okamoto, H., & Seiki, T. (2020). Evaluations of1761

the thermodynamic phases of clouds in a cloud-system-resolving model using1762

CALIPSO and a satellite simulator over the Southern Ocean. Journal of the1763

Atmospheric Sciences, 77 (11), 3781–3801. doi: 10.1175/JAS-D-19-0273.11764

Roh, W., Satoh, M., & Hohenegger, C. (2021). Intercomparison of cloud properties1765

in DYAMOND simulations over the Atlantic Ocean. Journal of the Meteorolog-1766

ical Society of Japan. Ser. II , 99 (6), 1439-1451. doi: 10.2151/jmsj.2021-0701767

Rossow, W. B., & Schiffer, R. A. (1991). ISCCP cloud data products. Bulletin of the1768

American Meteorological Society , 72 (1), 2–20. doi: 10.1175/1520-0477(1991)1769

072⟨0002:ICDP⟩2.0.CO;21770

Rossow, W. B., & Schiffer, R. A. (1999). Advances in understanding clouds from IS-1771

CCP. Bulletin of the American Meteorological Society , 80 (11), 2261–2288. doi:1772

10.1175/1520-0477(1999)080⟨2261:AIUCFI⟩2.0.CO;21773

Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., & Iga, S. (2008). Non-1774

hydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving1775

simulations. Journal of Computational Physics, 227 (7), 3486–3514. doi:1776

10.1016/j.jcp.2007.02.0061777

Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S.-J., Putman, W. M., &1778
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