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Abstract Global storm resolving models (GSRMs) represent the next generation of global climate models.
One of them is a 5-km Icosahedral Nonhydrostatic Weather and Climate Model (ICON). Its high resolution
means that parameterizations of convection and clouds, including subgrid-scale clouds, are omitted, relying on
explicit simulation but necessarily utilizing microphysics and turbulence parameterizations. Standard-
resolution (10-100 km) models, which use convection and cloud parameterizations, have substantial cloud
biases over the Southern Ocean (SO), adversely affecting radiation and sea surface temperature. The SO is
dominated by low clouds, which cannot be observed accurately from space due to overlapping clouds,
attenuation, and ground clutter. We evaluated SO clouds in ICON and the ERAS5 and MERRA-2 reanalyzes
using approximately 2400 days of lidar observations and 2300 radiosonde profiles from 31 voyages and a
Macquarie Island station during 2010-2021, compared to the model and reanalyzes using a ground-based lidar
simulator. We found that ICON and the reanalyzes underestimate the total cloud fraction by about 10% and 20%,
respectively. ICON and ERAS overestimate the cloud occurrence peak at about 500 m, associated with
underestimated lower tropospheric stability and overestimated lifting condensation level. The reanalyzes
strongly underestimate fog and very low-level clouds, and MERRA-2 underestimates cloud occurrence at
almost all heights. Outgoing shortwave radiation is overestimated in MERRA-2, implying a “too few, too
bright” cloud problem. SO cloud and fog biases are a substantial issue in the analyzed model and reanalyzes and
result in shortwave and longwave radiation biases.

Plain Language Summary Global storm-resolving models are climate models with km-scale
resolution, which are currently in development. Reanalyzes are the best estimates of past meteorological
conditions based on an underlying global model and observations. We evaluated clouds, temperature, and
humidity profiles over the Southern Ocean in one such model, ICON and two reanalyzes, based on 2400 days of
ship and station observations. Thanks to the high resolution, ICON relies on explicit simulation of clouds instead
of subgrid-scale parameterizations. For the evaluation, we used ceilometer and radiosonde observations and a
lidar simulator, which enables a fair comparison with ICON and reanalyzes. We subset our results by cyclonic
activity and stability. We found that ICON and reanalyzes underestimate lidar-derived cloud fraction, and the
reanalyzes do so more strongly. Fog and very low-level clouds are especially underestimated in the reanalyzes.
However, ICON and one of the reanalyzes also tend to overestimate the peak of cloud occurrence at 500 m
above the ground, and it tends to be higher. This is linked to thermodynamic profiles, which show a higher
lifting condensation level and lower stability. Southern Ocean cloud and fog biases are an important problem in
the analyzed model and reanalyzes and result in radiation balance biases.
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1. Introduction

Increasing climate model spatial resolution is one way of improving the accuracy of the representation of the
climate system in models (Mauritsen et al., 2022). It has been practiced since the advent of climate modeling as
more computational power, memory, and storage capacity become available. It is, however, often not as easy as
changing the grid size because of the complex interplay between model dynamics and physics, which necessitates
adjusting and tuning all components together. Increasing resolution is, of course, limited by the available
computational power and a trade-off with increasing parameterization complexity, which is another way of
improving model accuracy. Current computational availability and acceleration from general-purpose computing
on graphics processing units has progressed to enable km-scale (also called k-scale) Earth system models (ESMs)
and coupled atmosphere—ocean general circulation models for research today and will become operational in the
future. Therefore, it represents a natural advance in climate modeling. Global storm-resolving models (GSRMs)
are emerging as a new front in the development of high-resolution global climate models, with horizontal grid
resolutions of about 2-8 km (Satoh et al., 2019; Stevens et al., 2019). This resolution is enough to resolve
mesoscale convective storms, but smaller-scale convective plumes and cloud structure remain unresolved. At an
approximately 5-km scale, non-hydrostatic processes also become important (Weisman et al., 1997), and for this
reason such models are generally non-hydrostatic. The terms global cloud-resolving models or global convection-
permitting/-resolving models are also sometimes used interchangeably with GSRMs but imply that clouds or
convection are resolved explicitly, which is not entirely true for GSRMs, as this would require an even higher
horizontal resolution (Satoh et al., 2019). Representative of these efforts is the DYnamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains (DYAMOND) project (DYAMOND author
team, 2024; Stevens et al., 2019), which is an intercomparison of nine global GSRMs over two 40-day time
periods in summer (1 August—10 September 2016) and winter (20 January—1 March 2020). A new 1-year GSRM
intercomparison is currently proposed by Takasuka et al. (2024), with the hope of also evaluating the seasonal
cycle and large-scale circulation. An alternative to using a computationally costly GSRM is to train an artificial
neural network on GSRM output and use it for subgrid-scale clouds, as done with the GSRM ICON by Grundner
et al. (2022) and Grundner (2023).

The main aim of this study is to evaluate the GSRM version of ICON developed by the nextGEMS project
(nextGEMS authors team, 2024; Segura et al., 2025). ICON is developed and maintained jointly by Deutscher
Wetterdienst, the Max-Planck-Institute for Meteorology, Deutsches Klimarechenzentrum (DKRZ), Karlsruhe
Institute of Technology, and the Center for Climate Systems Modeling. Our aim is to quantify how well the
GSRM ICON simulates clouds over the Southern Ocean (SO), particularly in light of the fact that subgrid-scale
clouds and convection are not parameterized in this model. This region is mostly dominated by boundary layer
clouds generated by shallow convection, and these are problematic to observe by spaceborne lidars and radars,
which are affected by attenuation by overlapping and thick clouds (Mace et al., 2009; Medeiros et al., 2010) and
ground clutter (Marchand et al., 2008), respectively. Specifically, the radar on CloudSat and lidar on the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), neither of which are operational any
more, are affected by the above-mentioned issues, resulting in a strong underestimation of cloud occurrence
below 2 km in a merged CloudSat—CALIPSO product relative to ground-based lidar observations at McMurdo
Station (McErlich et al., 2021). Removing situations with higher overlapping clouds could enable a less biased
comparison of low clouds. We hypothesize that this, in turn, can lead to systematic biases in low clouds in climate
models and reanalyzes, which are frequently evaluated against CloudSat—-CALIPSO products. Reanalyses can
also suffer from cloud biases, as these are usually parameterized in their atmospheric component and also in
regions where input observations are sparse. This makes them a problematic reference for clouds over the SO, and
any biases relative to a reanalysis should be interpreted with caution. Instead, we chose to use a large set of ship-
based observations conducted with ceilometers and lidars on board the research vessel (RV) Polarstern and other
ships and a station as a reference for the model and reanalysis evaluation. Altogether, we analyzed approximately
2400 days of data from 31 voyages and a sub-Antarctic station covering diverse longitudes and latitudes of the
SO. To achieve a like-for-like comparison with the model, we used a ground-based lidar simulator called the
Automatic Lidar and Ceilometer Framework (ALCF; Kuma et al., 2021). We contrasted the results with the
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERAS5; ECMWEF, 2019) and the
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017).

The nextGEMS project focuses on the research and development of GSRMs at multiple modeling centers and
universities in Europe. The project also develops GSRM versions of the Icosahedral Nonhydrostatic Weather and
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Climate Model (ICON; Hohenegger et al., 2023), the Integrated Forecasting System (IFS; ECMWEF, 2023), and
their ocean components at eddy-resolving resolutions: ICON-O (Korn et al., 2022) coupled with ICON and
Finite-Element/volumE Sea ice-Ocean Model (FESOM; Q. Wang, Danilov, et al., 2014) and Nucleus for Eu-
ropean modeling of the Ocean (NEMO; Madec and the NEMO System Team, 2023) coupled with IFS. The
project has so far produced ICON and IFS simulations with three development versions called Cycle 1-3 and a
pre-final version, with a final production version planned by the end of the project. nextGEMS is not the only
project developing GSRMs; other GSRMs (or GSRM versions of climate models) currently in development
include: Convection-Permitting Simulations With the E3SM Global Atmosphere Model (SCREAM; Caldwell
et al., 2021), Non-hydrostatic Icosahedral Atmospheric Model (NICAM; Satoh et al., 2008), Unified Model
(UM), eXperimental System for High-resolution modeling for Earth-to-Local Domain (X-SHiELD; SHiELD
authors team, 2024), Action de Recherche Petite Echelle Grande Echelle-NonHydrostatic version (ARPEGE-NH;
Bubnova et al., 1995; Voldoire et al., 2017), Finite-Volume Dynamical Core on the Cubed Sphere (FV3,
Lin, 2004), the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System global
atmospheric model version 5 (GEOSS5; Putman & Suarez, 2011), Model for Prediction Across Scales (MPAS;
Skamarock et al., 2012), and System for Atmospheric Modeling (SAM; Khairoutdinov & Randall, 2003).

Multiple cloud properties have an effect on shortwave (SW) and longwave (LW) radiation. To first order, the total
cloud fraction, cloud phase, and the liquid and ice water path (LWP and IWP) are the most important cloud
properties influencing SW and LW radiation. These properties are in turn influenced by the atmospheric ther-
modynamics, convection and circulation, and both the indirect and direct effects of aerosols. Second-order effects
on SW and LW radiation are associated with the cloud droplet size distribution, ice crystal habit, cloud lifetime,
and direct radiative interaction with aerosols (Boucher et al., 2013). In the 6th phase of the Coupled Model
Intercomparison Project (CMIP6; Eyring et al., 2016), the cloud feedback has increased relative to CMIPS
(Zelinka et al., 2020), especially in the Southern Hemisphere mid-to-high latitudes, which is one of the main
reasons for the higher climate sensitivity of CMIP6 models.

The SO is known to be a problematic region for climate model biases (Cesana et al., 2022; Hyder et al., 2018; A. J.
Schuddeboom & McDonald, 2021; Zhao et al., 2022) due to a lack of surface and in situ observations. This region
has also long been a lower priority region for numerical weather prediction (NWP) and climate model devel-
opment because of its distance from populated areas. Nevertheless, radiation biases and changes over an area of its
size have a substantial influence on the global climate (Bodas-Salcedo et al., 2012; Rintoul, 2011), such as
affecting the Earth's radiation balance, ocean heat, and carbon uptake (R. G. Williams et al., 2023), and the SO is
also an important part of the global ocean conveyor belt (C. Wang, Danilov, et al., 2014). In general, marine
clouds have a disproportionate effect on top-of-atmosphere (TOA) SW radiation due to the relatively low albedo
of the sea surface. The relative longitudinal symmetry of the SO means that model cloud biases tend to be similar
across longitudes.

In the following text, we refer to the SO as ocean regions south of 40°S, low-latitude SO as 40-55°S, and high-
latitude SO as south of 55°8S, all the way to the Antarctic coast. The reason for this dividing latitude is to split the
SO into about two equal zones, as well as the results by A. J. Schuddeboom and McDonald (2021; Figure 2b)
which show a contrast in CMIP model radiation biases. A. Schuddeboom et al. (2019; Figure 2) and Kuma
et al. (2020; Figure 3) also show contrasting radiation biases in the Hadley Centre Global Environmental Model,
which is also supported by Cesana et al. (2022), displaying contrasting cloud biases due to the 0°C isotherm
reaching the surface at 55°S. The findings of Niu et al. (2024), however, support a different dividing line of 62°S
based on cloud condensation nuclei concentration.

SO radiation biases have been relatively large and systematic compared to the rest of the globe since at least CMIP3
(Bodas-Salcedo et al., 2012; Trenberth & Fasullo, 2010), and the SO SW cloud radiative effect bias is still positive
in eight CMIP6 models analyzed by A. J. Schuddeboom and McDonald (2021) over the high-latitude SO, whereas
over the low-latitude SO it tends to be more neutral or negative in some models. Too much absorbed SW radiation
over the SO was also identified in the GSRM SCREAM (Caldwell et al., 2021). Compensating biases are possible,
such as the “too few too bright” cloud bias, characterized by too small a cloud fraction and too large a cloud albedo
(Kuma et al., 2020; Wall et al., 2017), previously described by Webb et al. (2001), Weare (2004), M. H. Zhang
etal. (2005), Karlsson et al. (2008), Nam et al. (2012), Klein et al. (2013), and Bender et al. (2017) in other regions
and models, which means that a model can maintain a reasonable SW radiation balance by reflecting too much SW
radiation from clouds, but these cover too small an area. A study by Konsta et al. (2022) showed that this type of bias
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is still present in six analyzed CMIP6 models in tropical marine clouds, using the General-circulation-model-
Oriented CALIPSO Cloud Product (CALIPSO-GOCCP; Chepfer et al., 2010) and Polarization & Anisotropy
of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL; Lier &
Bach, 2008) as a reference. They suggest improper simulation of subgrid-scale cloud heterogeneity as a cause.
Compensating cloud biases in the Australian Community Climate and Earth System Simulator (ACCESS)—At-
mosphere-only model version 2 (AM2) over the SO were analyzed by Fiddes et al. (2022, 2024) and Possner
et al. (2022) showed that over the SO, the DYAMOND GSRM ICON underestimates low-level cloud fraction on
the order of 30% and overestimates net downward TOA SW radiation by approximately 10 Wm™? in the highest
model resolution run (2.5 km). Zhao et al. (2022) reported a similar SW radiation bias in five analyzed CMIP6
models over the high-latitude SO and an underestimation of the total cloud fraction on the order of 10% over the
entire 40-60°S SO. Recently, Ramadoss et al. (2024) analyzed 48 hr of km-scale ICON limited-area model NWP
simulations over an SO region adjacent to Tasmania against the Clouds, Aerosols, Precipitation, Radiation, and
atmospherlc Composition Over the southeRn oceaN (CAPRICORN) voyage cloud and precipitation observations
(McFarquhar et al., 2021). They found the ICON cloud optical thickness was underestimated relative to Himawari-
8 satellite observations but also identified large differences in cloud top phase.

In general, sea surface temperature (SST) biases in the SO can originate either in the atmosphere (Hyder
et al., 2018), caused by too much SW heating of the surface or too little LW cooling of the surface, such as in
situations of too much cloud cover or cloud optical thickness, or in the ocean circulation. Interactions of both are
also possible; for example, SST affecting clouds and clouds affecting the surface radiation. Using ERAS as a
reference, Q. Zhang et al. (2023) have shown that SST biases have improved in CMIP6 compared to CMIPS, with
SST overall increasing in CMIP6. However, over the SO, this resulted in an even higher positive bias, especially
in the Atlantic Ocean (AO) sector of the SO, increasing by up to 1°C. Luo et al. (2023) identified that the SO SST
bias in an ensemble of 18 CMIP6 models originates not from the surface heat and radiation fluxes (using
reanalyses as a reference) but from a warm bias in the Northern Atlantic Deep Water.

The organization of this study is as follows. In Section 2 we introduce our SO voyage and station data set, the
ceilometers, the lidar simulator software used in our comparison, the ICON model and MERRA-2 and ERAS
reanalyzes, a satellite data set used, a precipitation detection algorithm developed for profile filtering, and a data
partitioning method based on cyclonic activity and stability. Our results, presented in Section 3, consist of an-
alyses of cloud occurrence by height and daily cloud cover from lidar observations and the lidar simulator; TOA
radiation, LWP, and IWP from satellite observations and the model and reanalysis output; and vertical profiles of
relative humidity (RH) and potential temperature from a large set of radiosonde observations and the model and
reanalysis output. Lastly, we discuss limitations of our study in Section 4 and state the conclusions in Section 5.

2. Methods
2.1. Voyage and Station Data

Together, we analyzed data from 31 voyages of RV Polarstern, the resupply vessel (RSV) Aurora Australis, RV
Tangaroa, RV Nathaniel B. Palmer, Her (now His) Majesty's New Zealand Ship (HMNZS) Wellington, and one
sub-Antarctic station (Macquarie Island) in the SO south of 40°S between 2010 and 2021. Figure 1 shows a map
of the campaigns, Table 1 lists the campaigns, and Table 2 lists references where available. The analyzed data set
comprised 2421 days of data south of 40°S, but the availability of ceilometer data was slightly shorter due to gaps
in measurements.

The campaigns contained ceilometer observations captured by the Vaisala CL51, CT25K, and the Lufft CHM
15k, described in detail below (Sections 2.2 and 2.3). A ceilometer is a low-power, near-infrared, vertically
pointing lidar principally designed to measure cloud base, but they also measure the full vertical structure of
clouds as long as the laser signal is not attenuated by thick clouds, which can be used to infer additional infor-
mation such as a cloud mask and cloud occurrence by height. We note that during the MICRE campaign, the
ceilometers Vaisala CT25K and CL51 were installed at the Macquarie Island station concurrently, but in our
analysis we only used the CT25K data obtained from the Atmospheric Radiation Measurement (ARM) data
archive.

Apart from lidar observations, radiosondes were launched on weather balloons at regular synoptic times on the
RV Polarstern, MARCUS, NBP17024, TAN1702, and TAN1802 campaigns, measuring pressure, temperature,

KUMA ET AL.

4 of 35

35U8217 SUOWILIOD aA1Iea.1D 3|gedt|dde ayy Aq pausenob ale sapie YO ‘9sn JO 3N 104 Aelq i auluQ AB|IAM UO (SUOIIPUOD-PUR-SWB)0D AB | 1M AReid 1 puluo//:Ssdny) suonipuoD pue swie 1 8yl aes "[Gz0z/TT/zz] uo Aridiauluo A1 ‘Bulupsieg sueiels Aq ShTEFOAry20z/620T OT/I0p/wod A 1m Arlqipuljuosgndnbe//:sdny woly papeoumod ‘2z ‘520z ‘966869TZ



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Atmospheres 10.1029/20241D043 145

(a) 5 CapeTown — RV Tangaroa (b)
‘ HMNZS Wellington
...~ NBPalmer

— RSV Aurora Australis

— RV Polarstern
©  Macquarie ls.

Chatham s,
Wellingtc

Figure 1. (a) A map showing the tracks of 31 voyages of RV Polarstern, RSV Aurora Australis, RV Tangaroa, RV Nathaniel
B. Palmer, and HMNZS Wellington and one sub-Antarctic station (Macquarie Island) analyzed here. The tracks cover
Antarctic sectors south of South America, the Atlantic Ocean, Africa, Australia, and New Zealand in the years 2010-2021
(inclusive). The dotted and dashed lines at 40°S and 55°S delineate the Southern Ocean area of our analysis and its
partitioning into two subsets, respectively. A photo of (b) RV Polarstern (© Folke Mehrtens, Alfred-Wegener-Institut),

(c) Lufft CHM 15k installed on RV Tangaroa (© Peter Kuma, University of Canterbury), (d) Vaisala CL51 (® Jeff Aquilina,
Bureau of Meteorology), (e) Vaisala CT25K at Macquarie Island (© Simon P. Alexander, Australian Antarctic Division).

RH, and the global navigation satellite system coordinates. In total, about 2300 radiosonde profiles south of 40°S
were available. Spatially and temporally collocated profiles were taken from the model and reanalyses. Because
the time period covered by the ICON model output (2021-2024) was different from the time period covered by
the observations (2010-2021), when comparing with ICON, we first had to remap the observation time to model
time by taking the same time relative to the start of the year. Consequently, we also had four virtual/model profiles
(one for each year from 2021 to 2024) for each observed profile. Derived thermodynamic (virtual potential
temperature (6,), lifting condensation level (LCL), etc.) and dynamic physical quantities (wind speed and di-
rection) for the measured vertical profiles were calculated with the program radiosonde tool (rstool;
Kuma, 2024d). Surface meteorological quantities were measured continuously by an onboard automatic weather
station or individual instruments.

Some of the observational data were likely used in the assimilation of the reanalyzes. The Macquarie Island
station surface measurements and radiosonde profiles (not used in our analysis) were sent to the World Mete-
orological Organization Global Telecommunication System (GTS). The measurements on the RSV Aurora
Australis and HMNZS Wellington were not used outside of research purposes. The AWS measurements, but not
lidar or radiosonde measurements on the RV Tangaroa voyages, were collected by the New Zealand MetService
and communicated to the GTS. The ceilometer measurements on NBP1704 were not used outside of research
purposes.

2.2. Vaisala CL51 and CT25K

The Vaisala CL51 and CT25K (photos in Figures 1d and le) are ceilometers operating at near-infrared wave-
lengths of 910 and 905 nm, respectively. The CL51 can also be configured to emulate the Vaisala CL31. The
maximum range is 15.4 km (CL51), 7.7 km (CL31 emulation mode with 5 m vertical resolution), and 7.5 km
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(a) PS81/3 CL51 (observed)

102

10

Height (km)

(b) PS81/3 ERA5 CL51 (simulated)
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Att. vol. backscattering coef. (x107® m~1sr~1)
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Figure 2. An example of the attenuated volume backscattering coefficient (AVBC; a) measured by the CL51 during 24 hr on
the PS81/3 voyage and (b) an equivalent AVBC simulated with the ALCF from ERAS data during the same time period. The
red line identifies the cloud mask determined by the ALCF.

(CT25K). The vertical resolution is 10 m (5 m configurable) in CL51 and 30 m in CT25K observations. The
sampling (temporal) resolution is configurable, and in our data sets, it is approximately 6 s for CL51 on AA15-16,
16 s for CT25K on MARCUS and MICRE, 36 s for CL51 on RV Polarstern, and about 2.37 s for CL51 with CL31
emulation on TAN1502. The wavelengths of 905 and 910 nm are both affected by water vapor absorption of about
20% in the mid-latitudes (Wiegner & Gasteiger, 2015; Wiegner et al., 2019), with 910 nm affected more strongly,
but we do not expect this to be a significant issue, as explained in Kuma et al. (2021). The instrument data files
containing raw uncalibrated backscatter were first converted to the Network Common Data Form (NetCDF) with
cl2nc (Kuma, 2024c¢) and then processed with the ALCF (Section 2.4) to produce absolutely calibrated attenuated
volume backscattering coefficient (AVBC), cloud mask, cloud occurrence by height, and the total cloud fraction.
Because the CT25K uses a very similar wavelength to the CL51, equivalent calculations as for the CL51 were
done assuming a wavelength of 910 nm. The Vaisala CL51 and CT25K instruments were used on most of the
voyages and stations analyzed here. Figure 2a shows an example of AVBC derived from the CL51 instrument
data.

2.3. Lufft CHM 15k

The Lufft CHM 15k (photo in Figure 1c) ceilometer operates at a near-infrared wavelength of 1064 nm. The
maximum range is 15.4 km; the vertical resolution is 5 m in the near range (up to 150 m) and 15 m above; the
sampling (temporal) resolution is 2 s; and the number of vertical levels is 1024. NetCDF files containing un-
calibrated backscatter produced by the instrument were processed with the ALCF (Section 2.4) to produce
AVBC, cloud mask, cloud occurrence by height, and the total cloud fraction. The CHM 15k was used on four
voyages (HMNZSW16, TAN1702, TAN1802, and NBP1704).

24. ALCF

The Automatic Lidar and Ceilometer Framework (ALCF) is a ground-based lidar simulator and a tool for pro-
cessing observed lidar data, supporting various instruments and models (Kuma et al., 2021). It performs radiative
transfer calculations to derive equivalent lidar AVBC from an atmospheric model or a reanalysis, which can then
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(a) ANN diagram
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(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0-250 m (vertical axis)
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107

Att. vol. backscattering coef. (<1076 m~2sr~1)

(d) Measured and predicted precipitation time series M precipitation [ dry

Specificity

Sensitivity: 65%

: Specificity: 87%

Predicted positive rate: 26%
: True positive rate: 26%

024

1.0 0.‘8 0‘.6 0.‘4 0‘.2 0.0
Sensitivity 10-12-10 10-12-11 10-12-12 10-12-13 10-12-14 10-12-15 10-12-16 10-12-17 10-12-18 10-12-19 10-12-20

Figure 3. Artificial neural network (ANN) for prediction of precipitation in lidar backscatter. (a) Diagram showing the
TensorFlow structure of the ANN, (b) randomly selected example samples of very low-level (0-250 m) backscatter in four
categories (clear, fog, rain, and snow), as determined by coincident manual weather observations, (c) receiver operating
characteristic diagram of the ANN, (d) examples of 10-day time series of human-observed (“HUM”) and predicted
precipitation based on an ANN trained on all voyages (“ANN”) and all voyages except for the shown voyage (“ANN2”)
during three randomly selected voyages with the available data. Here, by “randomly selected,” we mean selected from the top
of a permutation generated by a pseudo-random number generator to prevent authors' bias in the selection.

be compared with observed AVBC. For this purpose, it takes the cloud fraction, liquid and ice mass mixing ratio,
temperature, and pressure fields as an input and is run offline (on the model or reanalysis output rather than inside
the model code). The lidar simulator in the ALCF is based on the instrument simulator Cloud Feedback Model
Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al., 2011). After
AVBC is calculated, a cloud mask, cloud occurrence by height, and the total cloud fraction are determined. The
total cloud fraction is defined as the fraction of profiles with clouds at any height in the lidar cloud mask. The
ALCEF has in the past been used by several research teams for model and reanalysis evaluation (Guyot et al., 2022;
Kremser et al., 2021; Kuma et al., 2020; McDonald, Kuma, et al., 2024; Pei et al., 2023; Whitehead et al., 2023).

Absolute calibration of the observed backscatter was performed by comparing the measured clear-sky molecular
backscatter statistically with simulated clear-sky molecular backscatter. AVBC was resampled to 5 min temporal
resolution and 50 m vertical resolution to increase the signal-to-noise ratio while having enough resolution to
detect small-scale cloud variability. The noise standard deviation was calculated from AVBC at the highest range,
where no clouds are expected. A cloud mask was calculated from AVBC using a fixed threshold of
2 X 107°m~!sr™! after subtracting 5 standard deviations of range-scaled noise. Figure 2b shows an example of
simulated Vaisala CL51 backscatter from ERAS data, corresponding to a day of measurements by the instrument
on the PS81/3 voyage.

How attenuation of the lidar signal affects cloud detection is dependent on factors such as the optical thickness of
the measured cloud and its backscattering phase function, as well as the range-dependent noise standard deviation

KUMA ET AL.
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Table 1
An Overview of the Analyzed Campaigns (Voyages and Stations)
Name Vessel or station Ceil. Region Start End Days
AA15-16 RSV Aurora Australis CL51 AU 2015-10-22 2016-02-22 124
HMNZSW16 HMNZS Wellington CHM 15k NZ 2016-11-23 2016-12-19 27
MARCUS RSV Aurora Australis CT25K AU 2017-10-29 2018-03-26 149
MICRE Macquarie Is. station CT25K AU/NZ 2016-04-03 2018-03-14 710
NBP1704 RV Nathaniel B. Palmer CHM 15k NZ 2017-04-14 2017-06-08 55
PS77/2 RV Polarstern CL51 SA/AO/AF 2010-12-01 2011-02-04 65
PS77/3 RV Polarstern CL51 SA/AO/AF 2011-02-07 2011-04-14 66
PS79/2 RV Polarstern CL51 SA/AO/AF 2011-12-06 2012-01-02 27
PS79/3 RV Polarstern CL51 SA/AO/AF 2012-01-10 2012-03-10 61
PS79/4 RV Polarstern CL51 SA/AO/AF 2012-03-14 2012-04-08 26
PS81/2 RV Polarstern CL51 SA/AO/AF 2012-12-02 2013-01-18 47
PS81/3 RV Polarstern CL51 SA/AO/AF 2013-01-22 2013-03-17 55
PS81/4 RV Polarstern CL51 SA/AO/AF 2013-03-18 2013-04-16 30
PS81/5 RV Polarstern CL51 SA/AO/AF 2013-04-20 2013-05-23 33
PS81/6 RV Polarstern CL51 SA/AO/AF 2013-06-10 2013-08-12 63
PS81/7 RV Polarstern CL51 SA/AO/AF 2013-08-15 2013-10-14 60
PS81/8 RV Polarstern CL51 SA/AO/AF 2013-11-12 2013-12-14 31
PS81/9 RV Polarstern CL51 SA/AO/AF 2013-12-21 2014-03-02 71
PS89 RV Polarstern CL51 SA/AO/AF 2014-12-05 2015-01-30 56
PS96 RV Polarstern CL51 SA/AO/AF 2015-12-08 2016-02-14 68
PS97 RV Polarstern CL51 SA/AO/AF 2016-02-15 2016-04-06 52
PS103 RV Polarstern CL51 SA/AO/AF 2016-12-18 2017-02-02 46
PS104 RV Polarstern CL51 SA/AO/AF 2017-02-08 2017-03-18 39
PS111 RV Polarstern CL51 SA/AO/AF 2018-01-21 2018-03-14 52
PS112 RV Polarstern CL51 SA/AO/AF 2018-03-18 2018-05-05 49
PS117 RV Polarstern CL51 SA/AO/AF 2018-12-18 2019-02-07 51
PS118 RV Polarstern CL51 SA/AO/AF 2019-02-18 2019-04-08 50
PS123 RV Polarstern CL51 SA/AO/AF 2021-01-10 2021-01-31 21
PS124 RV Polarstern CL51 SA/AO/AF 2021-02-03 2021-03-30 55
TAN1502 RV Tangaroa CL51/31 NZ 2015-01-20 2015-03-12 51
TAN1702 RV Tangaroa CHM 15k NZ 2017-03-09 2017-03-31 23
TAN1802 RV Tangaroa CHM 15k NZ 2018-02-07 2018-03-20 41
Total 2421
Note. Start, end, and the number of days (UTC; inclusive) refer to the time period when the vessel was south of 40°S.
Abbreviations: ceilometer (ceil.), Australia (AU), New Zealand (NZ), South America (SA), Atlantic Ocean (AO), and Africa
(AF). The number of days is rounded to the nearest integer. CL51/31 indicates CL51 configured to emulate CL31. Missing
days in the ceilometer data were HMNZSW16 (7 days): 24-27 November, 10 December, and 16—17 December 2016;
MARCUS (3 days): 8, 10 November, and 10 December 2017; MICRE (9 days): 7-8, 29 June, 5, 16 July, 15 August, 17
October 2016, 11 February, and 21 March 2017; and TAN1502 (1 day): 24 January.

(Kuma et al., 2021). A rough estimate can be made under an assumption of a relatively strongly backscattering

cloud of # = 100 x 1075m~!sr™! at a height of r; = 2 km, range-dependent noise 3, at r, = 8 km of about

5 x 107°m~'sr™!, and cloud detection threshold 8, = 2 X 10~%m~!sr™!, noise multiplication factor f = 5. At

full attenuation (relative to the detection threshold), the two-way attenuation factor A satisfies
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Table 2
Campaign Publication References
Name References
AA15-16 Klekociuk et al. (2020)
MARCUS McFarquhar et al. (2021), Xia and McFarquhar (2024), Niu et al. (2024)
MICRE McFarquhar et al. (2021)
NBP1704 Ackley et al. (2020)
PS77/2 Konig-Langlo (2011e), Konig-Langlo (2011a, 201 1c, 2014h), Fahrbach and Rohardt (2011)
PS77/3 Konig-Langlo (2011d), Konig-Langlo (2011b, 2012g, 2014i), Knust and Rohardt (2011)
PS79/2 Konig-Langlo (2012h), Konig-Langlo (2012d, 2012a, 2014;j), Kattner and Rohardt (2012)
PS79/3 Konig-Langlo (2012i), Konig-Langlo (2012b, 2012e, 2014k), Wolf-Gladrow and
Rohardt (2012)
PS79/4 Konig-Langlo (2012j), Konig-Langlo (2012c¢, 2012f, 20141), Lucassen and Rohardt (2012)
PS81/2 Konig-Langlo (20131), Konig-Langlo (2013a, 2013f, 2014a), Boebel and Rohardt (2013)
PS81/3 Konig-Langlo (2013m), Konig-Langlo (2013g, 2013b, 2014b), Gutt and Rohardt (2013)
PS81/4 Konig-Langlo (2013n), Konig-Langlo (2013c, 2013h, 2014¢), Bohrmann and Rohardt (2013)
PS81/5 Konig-Langlo (20130), Kénig-Langlo (2013d, 20131, 2014d), Jokat and Rohardt (2013)
PS81/6 Konig-Langlo (2013p), Konig-Langlo (2013e, 2013j, 2014e), Lemke and Rohardt (2013)
PS81/7 Konig-Langlo (2013q), Konig-Langlo (2013k, 2014f, 2016¢), Meyer and Rohardt (2013)
PS81/8 Konig-Langlo (2013r), Konig-Langlo (2014g, 2014n, 2014p), Schlindwein and
Rohardt (2014)
PS81/9 Konig-Langlo (2014r), Konig-Langlo (2014m, 20140, 2014q), Knust and Rohardt (2014)
PS89 Konig-Langlo (2015a), Konig-Langlo (2015d, 2015b, 2015c¢), Boebel and Rohardt (2016)
PS96 Konig-Langlo (2016h), Konig-Langlo (2016a, 2016d, 2016f), Schroder and Rohardt (2017)
PS97 Konig-Langlo (2016i), Kénig-Langlo (2016e, 2016b, 2016g), Lamy and Rohardt (2017)
PS103 Konig-Langlo (2017f), Konig-Langlo (2017d, 2017a, 2017c), Boebel and Rohardt (2018)
PS104 Konig-Langlo (2017¢), Konig-Langlo (2017g, 2017b), Gohl and Rohardt (2018),
Schmithiisen (2021g)
PS111 Schmithiisen (2019a), Schmithiisen (2020a, 2021h, 2021a), Schroder and Rohardt (2018)
PS112 Schmithiisen (2019b), Schmithiisen (2020b, 2021b, 2021i), Meyer and Rohardt (2018)
PS117 Schmithiisen (2019¢), Schmithiisen (2020c, 2021j, 2021c), Boebel and Rohardt (2019)
PS118 Schmithiisen (2019d), Schmithiisen (2020d, 2021d, 2021k), Dorschel and Rohardt (2019)
PS123 Schmithiisen (2021m), Schmithiisen (2021e, 20211), Schmithiisen, Jens, and Wenzel (2021),
Hoppmann, Tippenhauer, and Heitland (2023)
PS124 Schmithiisen (2021n), Schmithiisen (2021f), Schmithiisen, Rohleder, et al. (2021), Hoppmann,
Tippenhauer, and Hellmer (2023)
TAN1802 Kremser et al. (2020, 2021)
2
Ap =B, +f XpB, (%) . This is equivalent to exponential decay (A = ¢~>%) with optical depth & (at the lidar
wavelength) of about 1.7.
2.5. ICON
A atmosphere—ocean coupled GSRM version of the ICON model is in development as part of the nextGEMS
project (Hohenegger et al., 2023). ICON is a very flexible model, allowing for simulations ranging from coarse-
resolution ESM simulations, GSRM simulations, limited area model simulations, and large eddy simulations
(LES) for both weather prediction and climate projections. ICON uses the atmospheric component ICON-A
(Giorgetta et al., 2018), whose physics is derived from ECHAMS6 (Stevens et al., 2013), and the ocean
KUMA ET AL. 9 of 35
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component ICON-O (Korn et al., 2022). Earlier runs of the GSRM ICON from DYAMOND were evaluated by
Mauritsen et al. (2022).

Here, we use a free-running (i.e., the weather conditions in the model do not correspond to reality) coupled GSRM
simulation made for the purpose of climate projection. nextGEMS has so far produced four cycles of model runs.
We used a Cycle 3 run ngc3028 produced in 2023 (Koldunov et al., 2023; nextGEMS authors team, 2023) for a
model time period of 20 January 2020-22 July 2025, of which we analyzed the period 2021-2024 (inclusive). The
horizontal resolution of ngc3028 is about 5 km. The model output is available on 90 vertical levels and 3-hourly
instantaneous temporal resolution.

Unlike current general circulation models, the storm-resolving version of ICON does not use convective and
cloud parameterization but relies on explicit simulation of convection and clouds on the model grid. Subgrid-scale
clouds are not resolved, and the grid cell cloud fraction is always either O or 100%. While this makes the code
development simpler without having to rely on uncertain parameterizations, it can miss smaller-scale clouds
below the grid resolution. Turbulence and cloud microphysics have to be parameterized in this model as in other
models, and aerosols are derived from a climatology. To account for the radiative effects of subgrid-scale clouds,
a cloud inhomogeneity factor is introduced in the model, which scales down the cloud liquid water for radiative
calculations. It ranges from 0.4 at lower tropospheric stability (LTS) of 0 K to 0.8 at 30 K. In addition, turbulent
mixing in the Smagorinsky scheme was adjusted to allow mixing or entrainment in situations of no mixing under
the traditional scheme, affecting stratocumulus clouds but not trade wind clouds (Segura et al., 2025).

Because the analyzed ICON simulation was free-running (years 2021-2024, inclusive), weather and climate
oscillations (such as the El Nifio—Southern Oscillation (ENSO) phase) are not expected to be equivalent to reality.
To compare with the observations collected during a different time period (years 2010-2021, inclusive), we
compared the model output with observations at the same time of year and geographical location, as determined
for each data point, such as a lidar profile or a radiosonde launch. In the ALCF, this was done using the over-
ride_year option.

Due to our comparison being long-term and large-scale, it is expected that a comparison between the free-running
model and observations is statistically robust, despite weather-related differences between the two. Furthermore,
the results from multiple campaigns are combined in a way that equal statistical weight is given to each campaign,
eliminating an outsize influence of longer campaigns, allowing us to estimate uncertainty ranges under the
assumption of independence of weather conditions between the campaigns, and ensuring that the results are
statistically representative over the whole area covered by the campaigns. Different approaches to a comparison
would be possible. For example, one could use only the first several days of a free-running simulation initialized
from observations (or a reanalysis) for a comparison, as done in the Transpose-AMIP experiments (K. D. Wil-
liams et al., 2013), thus being able to compare clouds and the physical drivers under the same weather conditions.
Another possibility is the use of a model nudged to a reanalysis (Kuma et al., 2020), but this was not available for
our ICON simulations. We discuss further the implications of comparing the observations with a free-running
model in Section 4.

2.6. MERRA-2

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is a reanalysis
produced by the Global Modeling and Assimilation Office at the NASA Goddard Space Flight Center (Gelaro
et al., 2017). It uses version 5.12.4 of the Goddard Earth Observing System (GEOS) atmospheric model (Molod
et al., 2015; Rienecker et al., 2008). Non-convective clouds (condensation, autoconversion, and evaporation) are
parameterized using a prognostic scheme (Bacmeister et al., 2006), and sub-grid cloud fraction is determined
using total water distribution and a critical RH threshold. The reanalysis output analyzed here is available at a
spatial resolution of 0.5° of latitude and 0.625° of longitude, which is about 56 km in the north—south direction and
35 km in the east—west direction at 60°S. The number of vertical model levels is 72. Here, we use the following
products: 1-hourly instantaneous 2D single-level diagnostics (M2I1INXASM) for 2-m temperature and humidity;
3-hourly instantaneous 3D assimilated meteorological fields (M2I3NVASM) for cloud quantities, pressure, and
temperature; 1-hourly average 2D surface flux diagnostics (M2TINXFLX) for precipitation; and 1-hourly
average 2D radiation diagnostics (M2T1INXRAD) for radiation quantities (Bosilovich et al., 2016). Vertically
resolved fields in M2I3NVASM start at a height of about 60 m, which limits our analysis of fog and very low-
level (<250 m) clouds in this reanalysis.
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2.7. ERAS

ERAS5 (ECMWEF, 2019) is a reanalysis produced by the ECMWF. It is based on an NWP model IFS version
CY41R2. It uses the Tiedtke (1993) prognostic cloud scheme and the Forbes and Ahlgrimm (2014) scheme for
mixed-phase clouds. The horizontal resolution is 0.25° in latitude and longitude, which is about 28 km in the
north—south direction and 14 km in the east-west direction at 60°S. Internally, the model uses 137 vertical levels.
Here, we use output at 1-hourly instantaneous time intervals, except for radiation quantities, which are accu-
mulations (from these we calculate daily means). Vertically resolved quantities are available on 37 pressure
levels.

2.8. CERES

TOA radiation quantities are taken from the Clouds and the Earth's Radiant Energy System (CERES) instruments
onboard the Terra and Aqua satellites (Loeb et al., 2018; Wielicki et al., 1996). In our analysis, we used the
adjusted all-sky SW and LW upwelling fluxes at TOA, adjusted cloud LWP and IWP, and adjusted cloud amount
from the synoptic TOA and surface fluxes and clouds 1-degree daily edition 4A product (CER_SYNIldeg-
Day_Terra-Aqua-MODIS_Edition4A; Doelling et al., 2013, 2016). The water paths in the product are computed
from optical depth and particle size from geostationary satellites and the Moderate Resolution Imaging Spec-
troradiometer (MODIS, Pagano & Durham, 1993; CERES author team, 2025). The water paths were multiplied
by the cloud amount to get the water path relative to the whole grid cell area, equivalent to the definition used in
ICON and the reanalyzes.

Radiation and water path calculations presented in the results (Section 3) were completed such that they always
represent daily means in order to be consistent with the CERES SYN1deg data. Therefore, every instantaneous
profile in the simulated lidar data was assigned a daily mean radiation and water path value corresponding to the
day (in the Coordinated Universal Time; UTC). In turn, the average radiation and water paths during the entire
voyage or station observation period were calculated as averages of the profile values. In the observed lidar data,
the daily mean values were taken from the spatially and temporally co-located CERES SYN1deg data for the day
(in UTC). The voyage and station averages were calculated in the same way.

2.9. Precipitation Identification Using Machine Learning

Precipitation can cause strong enough lidar backscattering to be recognized as clouds by the threshold-based
cloud detection method used in the ALCF. This is undesirable if equivalent precipitation backscatter is not
included in the simulated lidar profiles. It was not possible to include precipitation simulation in the ALCF due to
the absence of required fields of liquid and ice precipitation mass mixing ratios in the model and reanalysis output.
While the fields could in principle be calculated from surface fluxes, such a calculation would be highly uncertain.
The required radiation calculations for precipitation are also currently not implemented in the ALCF, even though
this is a planned future addition. In order to achieve a fair comparison of observations with the model and
reanalysis output, we exclude observed and simulated lidar profiles with precipitation, either manually or using an
automated method. It is relatively difficult to distinguish precipitation backscatter from cloud backscatter in lidar
observations, especially when only one wavelength channel and no polarized channel are available (Kim
et al., 2020). In the model and reanalyzes, the same can be accomplished relatively easily by excluding profiles
exceeding a certain surface precipitation flux. In the observations, using precipitation flux measurements from
rain gauges can be very unreliable on ships due to ship movement, turbulence caused by nearby ship structures,
and sea spray. Our analysis of rain gauge data from the RV Tangaroa showed large discrepancies between the rain
gauge time series and human-performed synoptic observations, as well as large inconsistencies in the rain gauge
time series. Human-performed observations of precipitation presence or absence are expected to be reliable but
only cover a limited set of times. Therefore, it was desirable to implement a method of detecting precipitation
from observed backscatter profiles alone.

On the RV Polarstern voyages, regular manual synoptic observations were available and included precipitation
presence or absence and type. We used this data set to train a convolutional artificial neural network (ANN) to
recognize profiles with precipitation from lidar backscatter data (Figure 3a), implemented in the TensorFlow
ANN framework (Abadi et al., 2015). Samples of short time intervals (10 min) of very low-level lidar backscatter
(0-250 m) were classified as clear, rain, snow, and fog, using the synoptic observations as a training data set
(Figure 3b). From these, a binary, mutually exclusive classification of profiles as precipitating (rain or snow) or
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dry (clear or fog) was derived. For detecting model and reanalysis precipitation, we used a fixed threshold for

surface precipitation flux of 0.1 mm h™! (the ANN was not used).

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate (26%) was made to match
observations. The receiver operating characteristic curve is shown in Figure 3c. We considered these rates
satisfactory for the purpose of filtering precipitation profiles. Figure 3d shows examples of the predicted pre-
cipitation compared to human-performed observations. The main ANN (“ANN” in Figure 3) was trained on all
data, and ancillary ANNs (“ANN2” in Figure 3) were trained with portions of voyage data excluded to test the
results for each voyage.

2.10. Partitioning by Cyclonic Activity and Stability

In our analysis, we partitioned our data set by cyclonic activity and stability into multiple subsets to evaluate cloud
biases in the context of the main physical controlling processes. The SO is a region of the occurrence of both
extratropical and polar cyclones. Cyclonic activity results in cloud formation at the air mass boundaries along the
cold and warm fronts, as well as inside the cold sector, after a passing cold sector destabilizes the atmosphere
relative to the surface temperature. In the cold front and cold sector, clouds are convectively driven, including
deep convection, and the advection of colder air masses over warmer ocean surfaces can trigger convection and
subsequent cloud formation. In contrast, warm advection can trigger fog or cloud formation by boundary layer air
cooled by the ocean surface until it reaches saturation. More quiescent areas outside of cyclones can also be
associated with clouds. These can be, for example, associated with clouds formed by warm or cold advection
outside of cyclones, persistent clouds, clouds formed due to diurnal heating or cooling, or clouds formed due to
ocean currents. Boundary layer stability can be expected to be associated with clouds by either allowing con-
vection and turbulence under weak stability, inhibiting convection turbulence under strong stability, and by
capping inversion controlling the cloud top height or trapping moist air near the surface and preventing fog
dispersion. Therefore, dividing our data set by these subset. allows us to quantify model and reanalysis biases
associated with some of the main physical processes controlling cloud formation, persistence, and dissipation.
Other methods of subsetting, such as using the International Satellite Cloud Climatology Project (ISCCP)
pressure—optical thickness diagram (Hahn et al., 2001; Rossow & Schiffer, 1991, 1999) to separate profiles by
cloud regimes and other cloud regime classifications (Oreopoulos et al., 2016; A. Schuddeboom et al., 2018),
would be feasible.

We partitioned our data into two mutually exclusive subsets by cyclonic activity. For this purpose, we used a
cyclone tracking algorithm to identify extratropical cyclones and polar cyclones over the SO in the reanalysis and
ICON data. We used the open-source cyclone tracking package CyTRACK (Pérez-Alarcén et al., 2024).
Generally, what constitutes an extratropical cyclone is considered relatively arbitrary due to the very large
variability of the cyclones (Neu et al., 2013). The CyTRACK algorithm uses mean sea level pressure and wind
speed thresholds as well as tracking across time steps to identify cyclone centers and their radii in each time step.
With this information, we could classify every location at a given time as either cyclonic or non-cyclonic. Due to a
relatively small total area covered by cyclones, as identified by the cyclone center and radius, for every time step
and cyclone, we defined a cyclonic area as a circle of double the radius identified by CyTRACK centered at the
cyclone center. All other areas were defined as non-cyclonic. For identifying cyclones in the observations and the
reanalyzes, ERAS pressure and wind fields were used as the input to CyTRACK. This is justified by the fact that
the large-scale pressure and wind fields in ERAS are likely sufficiently close to reality. McErlich et al. (2023)
have shown that wind is simulated well in ERAS relative to the WindSat polarimetric microwave radiometer
measurements (Meissner & Wentz, 2009). For identifying cyclones in ICON, its own pressure and wind fields
were used as the input to CyTRACK because ICON is free-running, and thus the pressure and wind fields are
different from reality. Subsetting by proximity to cyclones is a relatively crude measure because it does not take
into account the different sectors of cyclones, which are commonly associated with different weather situations.
However, this was a choice made for simplicity of the analysis, given the quantity of data. Konstali et al. (2024)
performed a more complex attribution of precipitation to individual cyclone features.

In addition to the above, we partitioned our data into two mutually exclusive subsets based on LTS, which is
derived as the difference between the potential temperature at 700 hPa and the surface. Based on a histogram of
LTS in ERAS and MERRA-2 calculated at all voyage tracks and stations (Figure 4), we determined a statistically
based dividing threshold of 12 K for weak stability (<12 K) and strong stability (>12 K) conditions.
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Figure 4. Lower tropospheric stability (LTS) distribution in panel (a) ERAS5 and (b) MERRA-2 calculated for the 31 voyage
tracks and one station from the highest instantaneous temporal resolution data available. Shown is also the chosen dividing
threshold of 12 K for conditions of weak and strong stability.

3. Results
3.1. Cyclonic Activity and Stability

Figures 5a and 5b show the geographical distribution of the fraction of cyclonic days as determined by the cyclone
tracking algorithm applied to the ERAS reanalysis and ICON data (Section 2.10). As expected, the strongest
cyclonic activity is in the high-latitude SO zone and is relatively zonally symmetric at all latitudes. The pattern
matches reasonably well with Hoskins and Hodges (2005). While both reanalysis and ICON agree within about
8% in most areas, ICON is prevailingly more cyclonic by about 4%. There are clear differences, particularly in the
highest occurrence rate regions, such as around Cape Adare, which is up to 20% more cyclonic in ICON, and the
Weddell and Bellingshausen Seas, where ICON is less cyclonic by up to 10%. These differences might, however,
stem from the relatively short time periods of comparison (4 years) and the fact that ICON is free-running.

Figures 5c and 5d show the geographical distribution of the conditions of weak and strong stability as determined
by the LTS (Section 2.10). Conditions of weak stability are prevalent in the mid-to-high SO (50-65°S), which
might be explained by the relatively cold near-surface air overlying the relatively warm sea surface. Conditions of
strong stability are common elsewhere over the SO. The distribution is also less zonally symmetric than the
cyclonic activity. In the high-latitude SO, the presence of sea ice might have a substantial stabilizing effect
(Knight et al., 2024). ICON is also substantially less stable than ERAS across the whole region. In Section 3.5 we
show that based on radiosonde observations, the bias is in ICON and not ERAS, and it is the result of under-
estimated temperature at heights corresponding to 700 hPa, as well as overestimated near-surface (2 m) air
temperature, characterized by a higher frequency of occurrence in the 1-7°C range compared to observations at
radiosonde launch locations (Figure 6a). This may be related to large-scale circulation in ICON or radiative
transfer biases.

3.2. Cloud Occurrence by Height

We used the ALCF to derive cloud occurrence by height and the total cloud fraction from observations, ICON,
ERAS, and MERRA-2. The results for all campaigns individually are shown in Figure S1 of Supporting Infor-
mation S1. As shown in this figure, the biases are relatively consistent across the campaigns and longitudes. In
addition, we aggregated the campaigns by calculating the averages and percentiles of all individual profiles,
presented in Figure 7. The analysis shows that the total cloud fraction is underestimated in ICON by about 10%
and in the reanalyzes by about 20%. When analyzed by height, ICON overestimates cloud occurrence below 1 km
and underestimates it above; MERRA-2 underestimates cloud occurrence at all heights by up to 10%, especially
near the surface; and ERAS simulates cloud occurrence relatively well above 1 km but strongly underestimates it
near the surface. We note that fog or very low-level clouds are strongly underestimated in the reanalyzes (fog and
clouds are both included in the cloud occurrence). We conclude that the ICON results match the observations
better than the reanalyzes in this metric.
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Figure 5. Geographical distribution of (a, b) cyclonic days and (b, d) strong stability (LTS > 12 K) time steps in (a, c) ERAS
in years 2010-2013 (inclusive) and (b, d) ICON in model years 2021-2023 (free-running). Cyclonic days are expressed as a
fraction of the number of days with cyclonic activity, defined as grid points located within a double radius of any cyclone on a
given day (UTC), as identified by CyTRACK. The voyage tracks and the point of the MICRE campaign are also shown.

0.14

@ o8s 0.175 1(b) 010]©
0.12 A —8— ICON
= verra2 | 0.150 7
010 == 225 0.125 0081
> .
g 0081 0.100 4 0.06
o
© 0.06 4
& 0075 0.04
0.04 0.050 -
0.02 4
0.02 0.025
0.00 T T T T Y 0.000 T T T 0.00 T T T T T
-30 -20 -10 0 10 20 30 0 20 40 60 80 100 0 5 10 15 20 25 30
Near-surface air temperature (°C) Near-surface relative humidity (%) Lower tropospheric stability (K)

Figure 6. Histograms of near-surface (a) air temperature, (b) relative humidity, and (c) lower tropospheric stability at
radiosonde launch locations in the observations and the corresponding locations and times in the model and reanalyzes. Only
locations south of 40°S are included.
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Figure 7. Cloud occurrence by height calculated as the average of all voyages and stations and lifting condensation level
(LCL) distribution. The LCL is derived from radiosonde profiles and equivalent model and reanalysis profiles, which were
not available for all voyages and times. The total cloud fraction (CF), average outgoing shortwave (SW) and longwave (LW)
radiation, and the relative frequency of occurrence (RFO) are shown. The bands are the 16th—84th percentile, calculated from
the set of all voyages and stations.
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For all observations considered (Figure 7a), the data show cloud occurrence peaking near the surface, whereas the
model and reanalyzes show a higher peak (at about 500 m). The model and reanalyzes generally underestimate the
total cloud fraction by 10%—30% and show a strong drop in cloud occurrence near the surface, which is not
identified in the observations. ICON and ERAS overestimate cloud occurrence at their peak (between 0 and 1 km).
Above 1 km, ICON and MERRA-2 underestimate cloud occurrence, but ERAS5 is accurate to about 3% or less.
The exaggerated peak in the model and reanalyzes is partly explained by the LCL distribution, which peaks about
300 m higher in the model and reanalyzes than in the observations (near the surface), although this is not very
pronounced. This is indicative of near-surface RH often being close to saturation in the observations but not in the
model and reanalyzes (Figure 6b). There are multiple possible reasons for this bias, such as how the statistical
distribution of RH within a grid cell is represented in the model and reanalyzes, the air—sea moisture flux
parameterization, or weaker stability in the model and reanalyzes, which can cause more boundary mixing across
heights and thus lower near-surface RH.

When the data are subset by latitude (Figures 7b and 7c), we see that the low-latitude SO zone (40-55°S)
displays a stronger peak of cloud occurrence near the surface than the high-latitude SO zone (between 55°S
and the Antarctic coast), and this could be because higher latitudes have a greater prevalence of weakly stable
profiles (Figures 5c and 5d), although more stable profiles populate regions south of 65°S close to the
Antarctic coast. Cyclonic activity is also stronger in high-latitude SO, which is typically associated with
shallow or deep convection rather than the very stable stratification necessary for fog formation. The low- and
high-latitude SO zones show similar biases in the model and reanalyzes as in the general case, but ERAS5 does
not overestimate the peak in the low-latitude SO zone (very low-level cloud occurrence is still strongly
underestimated).

When the data are subset as either cyclonic or non-cyclonic situations (Figures 7d and 7e), we see that the cyclonic
situations have a larger amount of observed cloudiness, including peak and total cloud fraction, by about 10%. In
the cyclonic situations, the model and reanalysis vertical profiles of cloud occurrence compare well with ob-
servations, but they peak higher by about 200 m and are larger by about 8%. The reanalyzes tend to underestimate
cloud occurrence above 1 km by about 5% and near the surface by about 15%. Non-cyclonic situations are similar
to the general case, also because they form the majority of analyzed profiles (83%).

When the data are subset by stability (Figures 7f and 7g), as defined in Section 2.10, we see that in situations of
strong stability, cloud occurrence peaks strongly near the surface in observations, compared to situations of weak
stability, where the peak is more diffuse between 0 and 1 km. Physically, conditions of strong stability are
associated with the formation of advection fog, such as in situations of warm air advection from the north over a
colder sea surface, thus inducing fog formation by cooling of the warm and humid air by the cold surface. In
situations of strong stability, the model and reanalyzes have smaller biases than in weak stability, with an
overestimated peak of up to 12%, underestimated cloud occurrence above 1 km by up to 5%, and underestimated
cloud occurrence near the surface by about 10% in the reanalyzes but not ICON. In situations of weak stability, the
bias in ICON is very pronounced, with a much larger peak in cloud occurrence at about 500 m; the reanalyzes
underestimate cloud occurrence below 1 km, especially near the surface; and MERRA-2 underestimates cloud
occurrence more strongly at almost all heights.

In all subsets, even when the model and reanalyzes overestimate cloud occurrence at some altitudes, they always
substantially underestimate the total cloud fraction. ICON can be generally characterized as substantially over-
estimating cloud occurrence below 1 km and underestimating above, underestimating the total cloud fraction, and
showing the greatest biases in conditions of weak stability and non-cyclonic conditions. ICON also has a peak
cloud occurrence at higher altitudes than observations (500 m vs. near the surface), and correspondingly, its LCL
tends to be higher. MERRA-2 can be generally characterized as underestimating cloud occurrence at nearly all
altitudes as well as the total cloud fraction, but mostly above and below 500 m (the peak at 500 m is well rep-
resented). MERRA-2 displays the largest errors relative to observations in the low-latitude SO zone and under
weak stability. ERAS can be generally characterized as representing cloud occurrence correctly above about
1.5 km, overestimating between 500 m and 1 km, but underestimating very low-level cloud occurrence. The total
cloud fraction is strongly underestimated in all subsets. ERAS has a tendency toward greater cloud underesti-
mation in the low-latitude SO zone and under weak stability; conversely, it overestimates the peak of cloud
occurrence at 500 m in the high-latitude SO zone and under strong stability.
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3.3. Daily Cloud Cover

We also analyzed the daily cloud cover (total cloud fraction) distribution. This is a measure of cloudiness,
irrespective of height, calculated over the course of a day (UTC). A cloud detected at any height means that the
lidar profile was classified as cloudy; otherwise, it was classified as a clear sky. When all profiles in a day are
taken together, the cloud cover for the day is defined as the fraction of cloudy profiles in the total number of
profiles. It is expressed in oktas (multiples of 1/8), reflecting the 3-hourly output of MERRA-2 and ICON, that is,
8 times per day. The same calculation is done for the lidar observations as for the simulated lidar profiles. We use
the term “okta” independently of its use in instantaneous synoptic observations, and here it simply means 1/8
(0.125) of the daily cloud cover.

In Figure 8 we show the results for the same subsets of data as in Section 3.2. Observations display the highest
proportion of high cloud cover values (5-8 oktas), peaking at 7 oktas. This pattern is not represented by ICON or
either reanalysis. While ICON is closest to matching the observed distribution, it tends to be 1 okta clearer than the
observations, peaking at 6 oktas, and substantially underestimating days with 8 oktas. Overall, the reanalyzes
show results similar to each other, underestimating cloud cover by about 2 oktas and strongly underestimating
days with 7 and 8 oktas. Of the two reanalyzes, MERRA-2 has slightly higher cloud cover than ERAS, by about
6% at 6 oktas, which makes it more consistent with observations.

When analyzed by subsets, observations in the cyclonic subset show the highest cloud cover, with 8 oktas
occurring on one half of such days (Figure 8d). This sensitivity to cyclonic conditions is not observed in ICON or
the reanalyzes. Interestingly, clear sky days (0 oktas) also have a local maximum peaking at about 15% in this
subset. When we contrast the low- and high-latitude zones, we see that the high-latitude zone tends to have greater
cloud cover, peaking at 8 oktas (Figure 8c). The high-latitude zone also has almost no clear sky or small cloud
cover cases (0—4 oktas). ICON and the reanalyzes represent this characteristic of the distribution well for 0-3
oktas, but otherwise show biases similar to the general case. One of the greatest biases is present in ERAS in
the subset of weak stability, in which ERAS peaks at 3 oktas, while the observations peak at 7 oktas and show
negligible cloud cover below 5 oktas.

3.4. Top of Atmosphere Radiation, Liquid and Ice Water Path

In Figure 7, we also show the mean outgoing SW and LW TOA radiation, whose calculation is described in
Section 2.8. In observations, these come from daily mean CERES measurements averaged over the voyage tracks
or a station location, whereas in the model and reanalyzes they come from daily means of TOA radiation in the
output averaged over the same location and time periods.

In the general case (Figure 7a), [CON and ERAS underestimate the outgoing SW radiation by 22 and 20 Wm™>
(respectively), and MERRA-2 overestimates it by 6 Wm™2. While in ICON and ERAS5, this is in line with the
underestimated total cloud fraction of 10% and 22% (respectively); in MERRA-2, the opposite result is expected
from the underestimated total cloud fraction of about 20%. Neglecting the direct radiative effects of sea and
aerosol, this is only possible if the albedo of cloudy areas is overestimated, compensating for the lack of cloudy
areas.

We note that the radiative transfer calculations used in the lidar simulator mean that the impact of both cloud
phase and cloud fraction are convolved to produce the cloud mask. Therefore, the cloud occurrence is not affected
by any cloud phase biases as long as the cloud is optically thick enough to be detected and the laser signal is not
too attenuated. A combination of underestimated total cloud fraction and overestimated outgoing SW at TOA is
indicative of an overestimated cloud albedo (in cloudy areas) due to either cloud liquid and ice water content,
cloud phase, droplet or ice crystal size distribution, shape or orientation of ice crystals, cloud overlap, or their
combination. The influence of cold clouds is likely second-order due to the much larger typical effective radius of
ice crystals than cloud droplets.

In contrast to SW radiation, the model and reanalyzes have much smaller LW radiation biases, which is expected
due to the prevailing low-level clouds having similar temperatures as the surface. Roh et al. (2021) also found LW
biases to be much lower than SW biases in DYAMOND models over the tropical Atlantic Ocean. In ICON, the
outgoing LW radiation is overestimated by 5% (Figure 7a). This is likely caused by an underestimated total cloud
fraction exposing a larger sea surface area to cooling to space, which is typically warmer than the atmospheric

KUMA ET AL.

17 of 35

35U8217 SUOWILIOD aA1Iea.1D 3|gedt|dde ayy Aq pausenob ale sapie YO ‘9sn JO 3N 104 Aelq i auluQ AB|IAM UO (SUOIIPUOD-PUR-SWB)0D AB | 1M AReid 1 puluo//:Ssdny) suonipuoD pue swie 1 8yl aes "[Gz0z/TT/zz] uo Aridiauluo A1 ‘Bulupsieg sueiels Aq ShTEFOAry20z/620T OT/I0p/wod A 1m Arlqipuljuosgndnbe//:sdny woly papeoumod ‘2z ‘520z ‘966869TZ



AN |
M\I Journal of Geophysical Research: Atmospheres 10.1029/20241D043145
AND SPACE SCIENCES
*1(a) All
30 A
I OBS
5 25+ WEE ICON
< E=m MERRA-2
= 207w ERAS
& 15
o
“ 0
5
0
0 1 2 3 4 5 6 7 8
Daily total cloud fraction (okta)
*>7(b) 40-55°S 35.(€) 55+°S
30 A
30 A
25 A
25+
20 A 20 4
157 151
10 104
5 5 |
0 0-
0 1 2 3 4 5 6 7 0 1 2 3 8
50 1(d) Cyclonic % 1(e) Non-cyclonic
0 1 2 3 8
301(f) Strong stability (g) Weak stability
254
20+
15+
10+
5
0
0 1 2 3 4 5 6 7
Figure 8. Daily total cloud fraction histograms calculated as the average of all voyage and station histograms. The total cloud
fraction of a day (UTC) is calculated as a fraction of cloudy (based on the cloud mask) observed (OBS) or simulated lidar
profiles. The model, reanalyzes, and subsets are as in Figure 7.
temperature at 02 km, where most of the clouds are located. In the MERRA-2 and ERAS reanalyzes, the LW biases
are also slightly positive, 4 and 5 Wm™2, respectively. This is again in line with the underestimated total cloud
fraction by about 20%. However, if the clouds are too thick, as expected from the SW results, this might also provide
a compensating effect, in which too small a cloud area is counteracted by greater optical thickness in the LW
spectrum, thus reducing the outgoing LW radiation more in thick relative to thinner clouds. For thin clouds, the
outgoing TOA LW radiation originates both from the warmer surface (partly blocked by the clouds) and the clouds,
whereas for thick clouds, the outgoing TOA LW radiation originates mostly from the colder-than-surface clouds.
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Figure 9. Histograms and averages of outgoing (a) SW, (b) LW radiation at TOA, (c), e) liquid water path, and (d), f) ice
water path in CERES SYN1deg observations (OBS), ICON, MERRA-2, and ERAS. The results are shown for (a)—d) all and
(e), f) cloudy profiles. All campaigns are weighted equally. The statistics are calculated from daily mean values
corresponding to each time step and geographical location of the voyage tracks and stations.
In all the subsets (Figures 7b—7g), the same type of biases are observed, namely the outgoing SW radiation is
underestimated in ICON and ERAS and overestimated in MERRA-2, and the outgoing LW radiation is over-
estimated in the model and reanalyzes. Even though the total cloud fraction is higher by 6% over the high-latitude
SO than the low-latitude SO, the outgoing SW radiation is much greater by 41 Wm™2, implying a much greater
cloud albedo (of cloudy areas) over the high-latitude SO. ICON has little difference in the total cloud fraction
between low- and high-latitude SO, but greater outgoing SW radiation by 14 Wm™2 over the high-latitude SO,
likely due to thicker clouds under deeper convection in less stable and more cyclonic conditions relative to the
low-latitude SO. In contrast, the reanalyzes showed both greater total cloud fraction and outgoing SW radiation
over the high-latitude SO compared to the low-latitude SO.
Figures 9a and 9b shows the SW and LW radiation as histograms and their corresponding averages. ERAS and
ICON overestimate the frequency of outgoing SW near 80 Wm™2 (Figure 9a), which probably relates to clear sky
situations, as expected from the underestimated cloud fraction. They also underestimate the frequency of highly
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reflective situations above 200 Wm~2. MERRA-2 exhibits the too-few-too-bright problem in terms of over-
estimating the frequency of SW reflectivity around 200 Wm™2, given that the total cloud fraction in MERRA-2 is
strongly underestimated. The LW distribution shows that the model and reanalyzes overestimate outgoing LW
(Figure 9b), which is expected from the underestimated cloud fraction, exposing more of the warmer ocean
surface relative to colder clouds.

Figures 9¢—9f shows the LWP and IWP distributions as histograms and their corresponding averages. The LWP
and IWP are calculated from the mass of water in the column divided by the area of the column, that is, not just the
area of the cloudy portion of the column, as in some definitions. The available observational satellite reference for
the LWP and IWP over high latitudes is unfortunately very uncertain due to a high solar zenith angle and the
inability of passive visible and infrared retrievals to detect phase below the cloud top of mixed-phase clouds
(Duncan & Eriksson, 2018; Eliasson et al., 2011; Greenwald, 2009; Huang et al., 2006; Khanal et al., 2020;
Seethala & Horvath, 2010), and this limits our comparison. The LWP distribution shows that the model and
reanalyzes overestimate cases with a near-zero LWP (Figure 9c), which relates to the underestimated total cloud
fraction. MERRA-2 shows quite overestimated high-LWP situations, which is most likely related to the too-few-
too-bright problem of simulating lower total cloud fraction but clouds with a higher LWP to compensate. The
IWP (Figure 9d) is somewhat less important radiatively than LWP because of the typically larger and less
numerous hydrometeors. Similarly to the LWP, the model and reanalyzes overestimate situations with a near-zero
IWP. ERAS is otherwise simulating the IWP distribution well, but ICON and MERRA-2 underestimate the IWP.
In the cloudy situations (Figures 9e and 9f), it can be seen more distinctly that MERRA-2 overestimates moderate
(0.05-0.15 kg m~2) and high LWP (over 0.15 kg m~2), and ERAS5 and ICON underestimate moderate LWP.
ICON also overestimates high LWP, resulting in overestimated average LWP.

3.5. Relative Humidity and Potential Temperature Profiles

In order to examine the potential link in the cloud biases to the local physical conditions, we analyzed the
radiosonde profiles available from the campaigns (Section 2.1). The profiles were partitioned into the same
subsets as above (Sections 3.2 and 3.3). We focus on comparing 6, and RH, being one of the primary factors
affecting shallow convection and the associated low-level cloud formation and dissipation. The observed, model,
and reanalysis profiles of 6, and RH are shown in Figure 10.

Overall, the mean 0, is accurate to within 0.5 K in ICON and MERRA-2, except for ICON being colder by up to
2.5 K in the mid-to-high troposphere (less stable; Figure 10a). Larger differences exist, however, in the 40-55°S
zone, where ICON is colder by about 5 K at 5 km (Figure 10b). In other subsets, the bias is relatively small.
MERRA-2 and ERAS are very close to the observations, possibly due to a high accuracy of assimilation of this
quantity. Notably, the variability of 6, (as represented by the percentiles) is much smaller in ICON than in the
observations. This indicates that this model's internal variability in the lower-tropospheric thermodynamic
conditions in the SO is smaller than in reality.

RH displays much larger biases. In all subsets, ICON is too humid in the first 1 km by about 5%, but very accurate
above, except for the 40-55°S zone and conditions of weak stability (Figures 10b and 10g), where it is too dry
between about 1 and 3 km. Even though RH measured by radiosondes in the first 100 m is not very different
between the observations and the model and reanalyzes (Figure 10a), near-surface (2-m) RH at the radiosonde
launch locations is much greater in the observations, most often close to 100%, unlike in the model and rean-
alyzes, where 85% tends to be the most common (Figure 6b). This also explains why LCL is much more
frequently located at the surface in the observations than in the model and reanalyzes (Figure 7a). LCL is fully
determined by near-surface temperature, near-surface RH, and surface pressure.

Figure S2 in Supporting Information S1 shows 6, and RH profiles for profiles containing fog, cloud at 500 m, and
cloud at 1.5 km. These situations are characterized by particular cloud biases as identified in the lidar cloud
occurrence analysis. The rationale is to examine 6, and RH associated with these situations. Foggy situations are
characterized by a rapid increase of 9, with height and an observed average RH of about 90% near the surface
(Figure S2a in Supporting Information S1). In contrast, the model and reanalyzes predict higher RH in the first
100 m under foggy conditions by several percentage points. In situations with clouds occurring at 500 m, 6, is
relatively constant between the surface and 500 m (Figure S2b in Supporting Information S1), as expected for
convectively driven clouds. The observed RH peaks at 500 m at about 90%. The model and reanalyzes, however,
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Figure 10. Virtual potential temperature (6,) and relative humidity (RH) determined from radiosonde launches and co-
located profiles in ICON, ERAS, and MERRA-2 in subsets as in Figure 7. The solid lines are the average calculated from the
averages of every individual voyage and station. The bands span the 16th—84th percentiles, calculated from the distribution
of the voyage and station averages. Shown is also the relative frequency of occurrence and the number of profiles in each subset.
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Figure 11. Relative humidity histograms calculated from the observed radiosonde profiles and the equivalent model and reanalysis profiles for (a—d) all bins, (e-h) clear
bins, and (i-1) cloudy bins, determined from the lidar cloud mask. Model and reanalysis histogram values are relative to observations. The histogram values are
normalized to 100% for each level separately. All campaigns are weighted equally.

predicted higher RH between the surface and 500 m under these conditions, despite underestimated fog and low
clouds (we discuss the reasons for this later in this section). ICON and ERAS show a stronger decrease of RH
above this height than observations, and ERAS shows more strongly stable stratification. Unlike the foggy and
500-m cloud situations, situations with clouds at 1.5 km do not have a flat 6, with height. This indicates that,
unlike the former, clouds at 1.5 km are not (or not as strongly) convectively driven. As expected, RH in these
situations peaks at 1.5 km at about 85% in observations. In the model and reanalyzes, this peak is much less
pronounced.

Figure 6¢ shows the histogram of LTS calculated from all radiosonde profiles and the corresponding profiles in
the model and reanalyzes. It can be seen that ICON substantially underestimates the occurrence of cases of strong
stability above 16 K while overestimating the cases of moderate stability (8—16 K). When considered together
with the cloud occurrence results presented in Figure 7, we see that since ICON is biased toward weak stability, it
overrepresents cloud profiles strongly peaking at 500 m (Figure 7g) over cloud profiles with fog or very low-level
cloud (Figure 7f). This can be a physical reason for its overall positive bias in cloud at 500 m (Figure 7a) instead of
the observed cloud occurrence profile peaking near the surface. The reanalyzes simulate the LTS distribution well
except for a slight underestimation of LTS.

Figure 11 shows RH histograms calculated from the radiosonde observations and equivalent profiles in the model
and reanalyzes (shown as anomalies relative to the observations), calculated for all, clear, and cloudy bins, based
on the lidar observations and the simulated lidar backscatter in the model and reanalyzes. Here, we show only the
first 2 km to concentrate on the identified cloud biases seen at these heights. We can see several notable features.
The model and reanalyzes predict progressively fewer high-RH (>90%) bins above the ground (Figures 11b—
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11d). This can be related to either ice nucleation happening in the model and reanalyzes, which requires smaller
RH for saturation, or the grid cell size in the model and reanalyzes, which requires lower grid cell average RH than
100% for saturation to occur in a fraction of the grid cell. The model and reanalyzes also tend to simulate more
clear bins than observations for RH between 80% and 100% between the ground and about 1 km (Figures 11f—
11h). In the observations, these values of RH are associated with cloudy bins (Figure 11i). Conversely, the model
and reanalyzes predominantly associate only RH very close to 100% with cloudy bins at these heights
(Figures 11j—111). This may be one of the main reasons for the identified cloud or fog biases near the ground. A
possible explanation is that cloud droplets are able to form or persist at RH between 90% and 100% at these
heights over the SO. This could be due to abundant hygroscopic nuclei such as sea salt (Kong et al., 2018; Zieger
et al., 2017) or droplet generation from sea spray in the common high swell and high wind speed conditions over
the SO (Hartery et al., 2020; Revell et al., 2019). Stratus fractus or other broken clouds could also lead to less than
100% RH when averaged over the size of the vertical bins (up to 30 m in some of the radiosonde profiles).

Figure S3 in Supporting Information S1 shows histograms the same as the previous figure, but for 6,. They show a
more complex picture, characterized by a central peak at about 0°C near the surface, increasing to about 5°C at
2 km (Figure S3a in Supporting Information S1). For cloudy bins, the central peak is generally more constant with
height and even shows a minimum in 6, at about 500 m (Figure S3i in Supporting Information S1). This is
indicative of convection being associated with clouds at these heights, which results in flat 6, profiles. In the
reanalyzes, in the first 200 m, values slightly above 0°C are associated with more clear bins than in observations,
and values slightly below 0°C with fewer (Figures S3g and S3h in Supporting Information S1). Conversely, the
opposite is true for cloudy bins (Figures S3k and S31 in Supporting Information S1). Situations with 0°C near-
surface air temperature might occur predominantly when an open ocean surface keeps the near-surface air
temperature close to 0°C under otherwise colder air mass conditions, such as under cold advection. ICON displays
a notable bias above about 1 km, where the central peak is strongly underestimated (Figure S3j in Supporting
Information S1). Instead, these heights and values of 6, are more associated with clear bins (Figure S3f in
Supporting Information S1). This might be related to the strong underestimation of cloud occurrence at these
heights.

4. Limitations of This Study

Let us consider the main limitations of the presented results. The spatial coverage of our data set does not include
most parts of the Indian Ocean and Pacific Ocean sectors of the SO. Even though climatological features of the SO
are typically relatively uniform zonally, variations exist, such as those related to the Antarctic Peninsula and the
southern tip of South America. The voyages were mostly undertaken in the Austral summer months and only
rarely in the winter months, due to the poor accessibility of this region during winter. Therefore, our results are
likely representative of summer and, to a lesser extent, spring and autumn conditions. Ship access to sea-ice-
covered areas of the SO is also limited. Cloud regimes and phases in the region are seasonally variable
(Danker et al., 2022).

The time period of ICON is relatively short, with only four full years of simulation available. Moreover, the
simulation is free-running and ocean-coupled, which means that observations had to be temporally mapped to this
time period (at the same time relative to the start of the year) for the comparison. For these reasons, one can expect
the results to be slightly different due to reasons unrelated to the model and reanalysis biases, such as different
weather conditions, partially accounted for by the cyclone and stability subsetting, and the phase of climate
oscillations, such as the ENSO in the observations and ICON. The interannual variability in cloud occurrence in
ICON can be seen in Figure S1 of Supporting Information S1, where each year in ICON is represented by a
separate line. As could be expected, the interannual variability tends to be substantially smaller than the biases and
thus is unlikely to have a strong impact on the main findings.

It would be possible to use short-term ICON simulations for almost one-to-one comparison to observations.
However, here we focus on long-term biases, which are statistically more robust. Our analysis is, therefore,
complementary to shorter process-level studies. The reanalyzes pose the difficulty of determining how much
assimilated observations impact the results. While one might expect temperature and RH profiles to be well
represented in the reanalyzes due to assimilation of satellite data, we see that this is not always the case in
comparison with the radiosonde profiles and near-surface meteorological observations. This could be due to the
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limited vertical accuracy of satellite sounding measurements and obscuration by clouds. Despite the assimilation,
the cloud and radiation biases are often comparable to or greater than in the free-running model.

Ground-based lidar observations are affected by attenuation by thick cloud layers, and for this reason the results
are most representative of boundary layer clouds, while higher-level clouds are only occasionally visible to the
lidar when boundary layer clouds are not present. Ground-based lidar observations can be regarded as comple-
mentary to satellite lidar observations for the evaluation of low-level clouds, which are predominant in this region,
while mid- and high-level clouds are likely better sampled by satellite observations (McErlich et al., 2021).
Ground-based observations are, however, complicated by precipitation, and satellite observations can also be
used if the effect of overlapping clouds is carefully eliminated. Lidar retrievals close to the surface (~100 m) are
affected by uncertainties related to incomplete overlap, signal saturation (dead time), and after-pulse effect
corrections (Kuma et al., 2021).

Supercooled liquid clouds (liquid clouds under subzero temperature) commonly occur over the SO. In our
analysis of the LWP and IWP, we see that both phases are abundant. Because liquid water droplets are typically
smaller and more numerous than ice crystals in cold clouds, they attenuate a greater amount of the lidar radiation.
Clouds with a relatively modest optical thickness of 1.7 can attenuate the lidar signal for a detection at 2 km using
an instrument with noise properties like the Vaisala CL31 (Section 2.4). While supercooled liquid clouds and their
attenuation are accounted for by the lidar simulator, they can strongly attenuate the signal and cause artificially
low values of cloud occurrence at higher altitudes. For example, we found that cloud occurrence at 1.5 km is
underestimated in ICON and underlying clouds are overestimated. However, this can also mean that clouds at
1.5 km are present in the model, but the signal is too attenuated by the lower clouds in the model, but not in the
observations, where the underlying clouds are not as pronounced.

We have attempted to remove lidar profiles with precipitation (about 26% of all profiles), which could not be
properly simulated with the lidar simulator (Section 2.9). However, the approach was limited by the relatively low
sensitivity of the ANN (65%) and the fact that we had to choose a fixed threshold for surface precipitation flux in
the model and reanalyzes, which might not correspond to detection by the ANN applied to observations. We also
made no attempt to remove profiles with precipitation that did not reach the surface. The above reasons may result
in an artificial bias in the comparison, though we expect this to be much smaller than the identified model and
reanalysis biases.

Subsetting by cyclonic activity and stability is done based on the ERAS data. As we have shown, the reanalyzes
also suffer from biases in near-surface and upper-level quantities. Therefore, the subsetting is limited by the
accuracy of the ERAS pressure field, near-surface temperature, and temperature at 700 hPa. Near-surface ship
observations are affected by the ship structures as well as the variable height above sea level at which the
measurements are taken. The accuracy of radiosonde measurements in the first tens of meters from the surface is
also likely affected by the ship environment, such as turbulence generated by ship structures and the ship exhaust.
Vertical averaging of the radiosonde data can result in lower RH near saturation due to averaging of drier and
moister layers together. For example, some of the RV Polarstern radiosondes are available in vertical resolution
of about 20-30 m. As mentioned in Section 3.4, the satellite retrieval of the LWP and IWP is affected by large
biases, especially over high latitudes, which limits our comparison with the model and reanalyzes.

5. Discussion and Conclusions

We analyzed a total of about 2400 days of lidar and 2300 radiosonde observations from 31 campaigns and the
Macquarie Island sub-Antarctic station, covering the Atlantic, Australian, and New Zealand sectors of the SO
over 10 years. This data set, together with the use of a ground-based lidar simulator, provided a comprehensive
basis for evaluating SO cloud and thermodynamic profile biases in the GSRM ICON and the ERAS5 and MERRA-
2 reanalyzes. Our analysis provides a unique evaluation perspective, complementary to satellite observations for
evaluating boundary layer clouds and fog, which are predominant in this region. We did not, however, analyze the
cloud phase based on ground-based observations. Cloud phase can have a strong impact on the SW radiative
transfer due to larger and therefore less numerous hydrometeors in cold and mixed-phase clouds (for the same
amount of water), scattering much less SW radiation. Especially, the underestimation of fog or very low-level
clouds is very substantial in the reanalyzes, and we showed that this relates to cloud and fog formation or
persistence at RH between 80% and 100% in the boundary layer in the observations, while in the model and
reanalyzes RH values less than 100% are associated with clear bins. We subset the data set by low and high
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Table 3 latitude SO bands, cyclonic activity, and stability in order to identify how

Summary of the Main Biases

these conditions influence the biases. The main identified biases are sum-

marized in Table 3 and discussed below.

Total cloud fraction (%)
Daily cloud cover (okta)
Fog (%)

BL clouds (at ~500 m)
Mid-lev. clouds (at ~1.5 km)
RH at 500 m

SW (W m~2)

LW (W m™2)

LWP (g m~2)

IWP (g m™2)

LCL distribution peak (m)

ICON MERRA-2 ERAS
—10 20 20 Our main finding corroborates previous findings of large boundary layer
-1 _2 _ cloud biases in the model and reanalyzes and their subsequent effect on the
radiative transfer. For example, low- and mid-level clouds in the cold-air
0 10 10 sector of cyclones were identified as being responsible for most of the SW
15 0 5 bias by Bodas-Salcedo et al. (2012). Precipitation in intense extratropical
=5 =5 0 oceanic cyclones is projected to increase with future warming (Kodama
2 2 0 et al., 2019). The understanding of radiation biases was refined by Bodas-
25 5 —-20 Salcedo et al. (2014), who highlighted that the SW bias was associated
5 5 5 with an incorrectly simulated mid-level cloud regime, which occurred in
regions where clouds with tops at mid-level and low levels occurred. Ram-
L 20 e adoss et al. (2024) have shown that in precipitating conditions, km-scale
=30 =30 -15 ICON has SW radiative biases associated with the overrepresentation of the
300 300 300 liquid phase at the cloud top in low stratocumulus clouds in a short (48-hr)

Note. Values are relative to observations and rounded to the nearest multiple
of 5, except for daily cloud cover and RH, which are rounded to the nearest
integer. The best-performing value is marked in bold. Abbreviations:
boundary layer (BL), relative humidity (RH), shortwave (SW), longwave
(LW), liquid water path (LWP), ice water path (IWP), and lifting conden-

sation level (LCL).

simulation over the SO. Fiddes et al. (2024) suggested that biases in the LWP
are the largest contributor to the cloud radiative bias over the SO. Our general
finding applies to the new GSRM ICON, but the biases are lower than in the
reanalyzes in several aspects, namely the total cloud fraction, daily cloud
cover, fog, and the LWP (Table 3), despite the reanalyzes having the
advantage of assimilation of the observed meteorological conditions. ICON,
on the other hand, performs worse than the reanalyzes in clouds and RH at
500 m, mid-level clouds (here defined as 1.5 km), outgoing SW radiation, and the IWP. ICON has the advantage
of a much higher spatial resolution and, to a limited extent, explicit calculation of traditionally subgrid-scale
processes such as convection. These are incomplete due to the lack of sub-grid scale convection parameteriza-
tion below the km scale. The lack of parameterized subgrid-scale convection in ICON was a pragmatic choice in
the model development, but it can be a source of substantial cloud biases even at the 5-km resolution.

We show that relative to ERAS, the distribution and strength of cyclonic activity over the SO is well represented
in ICON, but it displays lower values of LTS. The latter is also manifested in the radiosonde profile comparison
(Figure 6¢), showing that the 6, profiles in ICON are less stable than in the observations. It is also manifested in
near-surface air temperature, which is overestimated in the 1-7°C range at the radiosonde launch locations
(Figure 6a). The underestimated LTS is linked to the overestimated cloud peak at 500 m in the lidar cloud
occurrence comparison (Figures 7f and 7g). It might also be interacting with the cloud inhomogeneity factor
employed in ICON (Section 2.5), resulting in lower cloud liquid water used in radiative calculations, hence
decreased outgoing SW radiation. Based on the 0, profile analysis, clouds at 500 m are predominantly con-
vectively driven, and it is therefore expected that a bias toward weak stability results in an increased cloud
formation at this level. The underestimation of clouds above 1 km in ICON does not have a clear physical reason
in our analysis and is likely partially or fully caused by stronger obscuration of the simulated lidar signal by the
underlying and overestimated clouds in ICON at around 500 m.

The campaigns show remarkably similar biases in cloud occurrence by height in the lidar comparison (Figure S1
in Supporting Information S1), which indicates that common underlying causes for the biases exist regardless of
longitude and season. ICON underestimates the total cloud fraction by about 10%, with an overestimation of
clouds below 1 km and an underestimation of clouds above 1 km. The reanalyzes underestimate the total cloud
fraction by about 20%. ERAS overestimates clouds below 1 km but underestimates very low-level clouds and fog.
ICON strongly overestimates the peak of cloud occurrence at about 500 m. This can be explained by the
radiosonde comparison, showing that it is too moist at around this height (Figure 10a); has underestimated LTS
(Figures 5 and 6c), permitting shallow convection to this height; and has underestimated near-surface RH
(Figure 6b), resulting in higher LCL (Figure 7). Similar to our results for mid-level clouds, Cesana et al. (2022)
showed that CMIP6 models also tend to underestimate cloud occurrence above 2 km over the SO, although their
analysis in this case was limited to liquid clouds.
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The inability of the model and reanalyzes to simulate fog can be linked to various biases identified in our analysis.
Near-surface RH is too low in the model and reanalyzes (Figure 6b), potentially due to low moisture flux from the
surface and too effective boundary layer mixing. Near-surface temperature is also too high in ICON, and it can be
expected that fog formation occurs in low near-surface temperature conditions when a warm and moist air mass is
cooled by the surface to the saturation point. Figure S2 in Supporting Information S1 shows that fog occurs under
highly stratified conditions. The underestimated LTS in ICON (and to a lesser extent in the reanalyzes; Figure 6¢)
indicates that the model and reanalyzes are biased to weaker stability, thus having less favorable conditions for
fog formation and persistence. The RH distribution in cloudy bins (Figure 11) also suggests that in observations,
very low-level hydrometeors can occur under lower RH in observations than in the model and reanalyzes. This
could be due to high availability of cloud condensation nuclei (CCN) or ice nucleating particles (INPs) or due to
hydrometeors and aerosols formed via sea spray under high swell and wind conditions. These parametrizations
are likely very uncertain in the model and reanalyzes in the SO due to the sparsity of reference data. Kawai
et al. (2016) have shown that marine fog has some of the highest concentrations globally over the SO, and SO
marine fog has a greater occurrence in winter. They conclude that marine fog is related to large-scale circulation
and warm advection, and this is expected to change in a warming climate.

Compared to lidar observations, the daily cloud cover tends to be about 1 okta lower in ICON and 2 oktas lower in
the reanalyses. Conditions of weak stability are associated with some of the greatest biases, especially in ERAS.
The model and reanalyses also underestimate the cloud cover very strongly in cyclonic conditions, which are very
cloudy in the observations (8 oktas) but much less so in the model and reanalyses. Similarly, McErlich
et al. (2023) found a 40% underestimation of cloud liquid water in cyclones over the SO in ERAS, despite total
column water vapor being simulated much more accurately (5% underestimation).

The radiosonde observations indicate that the LCL is too high in ICON and reanalyzes, which is probably
responsible for the higher peak of clouds in the model and reanalyzes and the lack of very low-level clouds and
fog. Notably, ICON exhibits smaller internal variability in 6, than the radiosonde observations. The analysis of
the LWP and IWP (Figures 9c—9f) shows that both phases are present in observations in about equal amounts. The
model and reanalyzes show diverse biases, the most pronounced being overestimation of high-LWP values in
MERRA-2 and overestimation of cases with a near-zero LWP and IWP in the model and reanalyses. The model
and reanalyses tend to compensate for the overestimated cases of a near-zero LWP with more high-LWP values to
get a mean LWP that is either less (but close) to the observations (ERAS) or higher than the observations ICON
and MERRA-2). The IWP is underestimated in the models and reanalyses. In the case of ICON and MERRA-2,
the mean IWP was underestimated and LWP overestimated, indicating that the model and reanalyses produce too
much liquid and not enough ice phase. This is in contrast with previous findings of the lack of supercooled liquid
over the SO in other models. If the liquid phase is overestimated relative to the ice phase, one would expect
underestimated cloud SW reflectivity due to a larger number of smaller hydrometeors for the same amount of
water. Cloudy areas would then appear brighter in the SW spectrum. This can contribute to the too few, too bright
bias, that is, the overestimated brightness of cloudy areas compensates for the lower total cloud fraction. As
mentioned in Section 3.4, the LWP and IWP are, however, affected by the high uncertainty of the satellite
retrievals.

The relationship between cloud biases and radiation has a number of notable features. MERRA-2 exhibits the too-
few-too-bright bias previously identified in models and reanalyses. In our results, this is characterized by
overestimated outgoing TOA SW radiation, while at the same time total cloud fraction is underestimated based on
the ground-based lidar observations. On the other hand, this relationship is not present in ICON or ERAS. ICON
predicts smaller outgoing TOA SW radiation and smaller total cloud fraction than observations, and the deficit of
outgoing TOA SW radiation is approximately proportional to the deficit of the total cloud fraction. While this
might be a welcome feature and an improvement over previous models, it does mean that the outgoing TOA SW
radiation is overall underestimated instead of being compensated by a higher cloud albedo. This can, of course,
lead to undesirable secondary effects such as overestimated solar heating of the sea surface, among other factors
responsible for SO SST biases in climate models (Hyder et al., 2018; Luo et al., 2023; Q. Zhang et al., 2023). In
contrast with our results, A. J. Schuddeboom and McDonald (2021) showed that CMIP6 models tend to over-
estimate a stratocumulus cloud regime over the SO.

Our results imply that SO cloud biases are a substantial issue even in the km-scale resolution ICON and the
reanalyses. More effort is therefore needed to improve the cloud simulations in this understudied region. We see
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large enough to cause important radiative biases. Parts of the GSRM relevant to low clouds, however, do not
benefit from the higher resolution, such as cloud microphysics, unresolved clouds smaller than the grid cell, and
turbulence. Cloud biases have also been shown to be a persistent issue in other GSRM models (Seiki et al., 2022).

We suggest the following avenues for future research. Evaluation of ocean—atmosphere heat, moisture, and
momentum fluxes with in situ observations over the SO and comparison of GSRM simulations with large-eddy
simulations in process-oriented studies; evaluation of the DY AMOND project simulations in a similar manner as
performed here (for models that provide the necessary fields); and combining active satellite sensors such as the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP) on CALIPSO and Atmospheric
Lidar (ATLID; Héliere et al., 2017) on the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE;
[lingworth et al., 2015) satellite with ground-based remote sensing could provide a more complete understanding
of the cloud biases across the whole troposphere. Cloud phase could be analyzed in more detail using the
CALIPSO data, as was done by Roh et al. (2020) in a cloud-resolving model, or using ground-based observations
with the dual-polarization Mini Micro Pulse Lidar (MiniMPL; Campbell et al., 2002; Flynn et al., 2007; Spin-
hirne, 1993) data available from the TAN1802 voyage. Guyot et al. (2022) and Whitehead et al. (2024) have
developed a machine learning method for identifying cloud phase from ceilometer data, and this could be used
with our ground-based lidar data set to analyze the cloud phase. However, their method would require a careful
calibration with reference data coming from this region.
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