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Abstract

Global storm resolving models (GSRMSs) represent the next generation of global climate
models. One of them is a 5-km Icosahedral Nonhydrostatic Weather and Climate Model
(ICON). Its high resolution means that parameterizations of convection and clouds, in-
cluding subgrid-scale clouds, are omitted, relying on explicit simulation but necessarily
utilizing microphysics and turbulence parameterizations. Standard-resolution (10-100 km)
models, which use convection and cloud parameterizations, have substantial cloud bi-
ases over the Southern Ocean (SO), adversely affecting radiation and sea surface tem-
perature. The SO is dominated by low clouds, which cannot be observed accurately from
space due to overlapping clouds, attenuation, and ground clutter. We evaluated SO clouds
in ICON and the ERA5 and MERRA-2 reanalyses using approximately 2400 days of li-
dar observations and 2300 radiosonde profiles from 31 voyages and a Macquarie Island
station during 2010-2021, compared to the model and reanalyses using a ground-based
lidar simulator. We found that ICON and the reanalyses underestimate the total cloud
fraction by about 10 and 20%, respectively. ICON and ERAS5 overestimate the cloud oc-
currence peak at about 500 m, associated with underestimated lower tropospheric sta-
bility and overestimated lifting condensation level. The reanalyses strongly underesti-
mate fog and very low-level clouds, and MERRA-2 underestimates cloud occurrence at
almost all heights. Outgoing shortwave radiation is overestimated in MERRA-2, imply-
ing a “too few, too bright” cloud problem. SO cloud and fog biases are a substantial is-
sue in the analyzed model and reanalyses and result in shortwave and longwave radia-
tion biases.

Plain Language Summary

Global storm-resolving models are climate models with km-scale resolution, which
are currently in development. Reanalyses are the best estimates of past meteorological
conditions based on an underlying global model and observations. We evaluated clouds,
temperature, and humidity profiles over the Southern Ocean in one such model, ICON
and two reanalyses, based on 2400 days of ship and station observations. Thanks to the
high resolution, ICON relies on explicit simulation of clouds instead of subgrid-scale pa-
rameterizations. For the evaluation, we used ceilometer and radiosonde observations and
a lidar simulator, which enables a fair comparison with ICON and reanalyses. We sub-
set our results by cyclonic activity and stability. We found that ICON and reanalyses
underestimate lidar-derived cloud fraction, and the reanalyses do so more strongly. Fog
and very low-level clouds are especially underestimated in the reanalyses. However, ICON
and one of the reanalyses also tend to overestimate the peak of cloud occurrence at 500
m above the ground, and it tends to be higher. This is linked to thermodynamic pro-
files, which show a higher lifting condensation level and lower stability. Southern Ocean
cloud and fog biases are an important problem in the analyzed model and reanalyses and
result in radiation balance biases.

1 Introduction

Increasing climate model spatial resolution is one way of improving the accuracy
of the representation of the climate system in models (Mauritsen et al., 2022). It has been
practiced since the advent of climate modeling as more computational power, memory,
and storage capacity become available. It is, however, often not as easy as changing the
grid size because of the complex interplay between model dynamics and physics, which
necessitates adjusting and tuning all components together. Increasing resolution is, of
course, limited by the available computational power and a trade-off with increasing pa-
rameterization complexity, which is another way of improving model accuracy. Current
computational availability and acceleration from general-purpose computing on graph-
ics processing units has progressed to enable km-scale (also called k-scale) Earth system
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models (ESMs) and coupled atmosphere—ocean general circulation models for research
today and will become operational in the future. Therefore, it represents a natural ad-
vance in climate modeling. Global storm-resolving models (GSRMs) are emerging as a
new front in the development of high-resolution global climate models, with horizontal
grid resolutions of about 2-8 km (Satoh et al., 2019; Stevens et al., 2019). This resolu-
tion is enough to resolve mesoscale convective storms, but smaller-scale convective plumes
and cloud structure remain unresolved. At an approximately 5-km scale, non-hydrostatic
processes also become important (Weisman et al., 1997), and for this reason such mod-

els are generally non-hydrostatic. The terms global cloud-resolving models or global convection-

permitting /-resolving models are also sometimes used interchangeably with GSRMs but
imply that clouds or convection are resolved explicitly, which is not entirely true for GSRMs,
as this would require an even higher horizontal resolution (Satoh et al., 2019). Repre-
sentative of these efforts is the DYnamics of the Atmospheric general circulation Mod-
eled On Non-hydrostatic Domains (DYAMOND) project (Stevens et al., 2019; DYAMOND
author team, 2024), which is an intercomparison of nine global GSRMs over two 40-day
time periods in summer (1 August—10 September 2016) and winter (20 January—1 March
2020). A new one-year GSRM intercomparison is currently proposed by Takasuka et al.
(2024), with the hope of also evaluating the seasonal cycle and large-scale circulation.

An alternative to using a computationally costly GSRM is to train an artificial neural
network on GSRM output and use it for subgrid-scale clouds, as done with the GSRM
ICON by Grundner et al. (2022) and Grundner (2023).

The main aim of this study is to evaluate the GSRM version of ICON developed
by the nextGEMS project (nextGEMS authors team, 2024; Segura et al., 2025). ICON
is developed and maintained jointly by Deutscher Wetterdienst, the Max-Planck-Institute
for Meteorology, Deutsches Klimarechenzentrum (DKRZ), Karlsruhe Institute of Tech-
nology, and the Center for Climate Systems Modeling. Our aim is to quantify how well
the GSRM ICON simulates clouds over the Southern Ocean (SO), particularly in light
of the fact that subgrid-scale clouds and convection are not parameterized in this model.
This region is mostly dominated by boundary layer clouds generated by shallow convec-
tion, and these are problematic to observe by spaceborne lidars and radars, which are
affected by attenuation by overlapping and thick clouds (Mace et al., 2009; Medeiros et
al., 2010) and ground clutter (Marchand et al., 2008), respectively. Specifically, the radar
on CloudSat and lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation (CALIPSO), neither of which are operational any more, are affected by the above-
mentioned issues, resulting in a strong underestimation of cloud occurrence below 2 km
in a merged CloudSat—CALIPSO product relative to ground-based lidar observations at
McMurdo Station (McErlich et al., 2021). Removing situations with higher overlapping
clouds could enable a less biased comparison of low clouds. We hypothesize that this,
in turn, can lead to systematic biases in low clouds in climate models and reanalyses,
which are frequently evaluated against CloudSat—CALIPSO products. Reanalyses can
also suffer from cloud biases, as these are usually parameterized in their atmospheric com-
ponent and also in regions where input observations are sparse. This makes them a prob-
lematic reference for clouds over the SO, and any biases relative to a reanalysis should
be interpreted with caution. Instead, we chose to use a large set of ship-based observa-
tions conducted with ceilometers and lidars on board the research vessel (RV) Polarstern
and other ships and a station as a reference for the model and reanalysis evaluation. Al-
together, we analyzed approximately 2400 days of data from 31 voyages and a sub-Antarctic
station covering diverse longitudes and latitudes of the SO. To achieve a like-for-like com-
parison with the model, we used a ground-based lidar simulator called the Automatic
Lidar and Ceilometer Framework [ALCF; Kuma et al. (2021)]. We contrasted the results
with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis 5 [ERAS; ECMWF (2019)] and the Modern-Era Retrospective analysis for Research
and Applications, Version 2 [MERRA-2; Gelaro et al. (2017)].



134 The nextGEMS project focuses on the research and development of GSRMs at mul-
135 tiple modeling centers and universities in Europe. The project also develops GSRM ver-
136 sions of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON; Hohenegger
137 et al. (2023)), the Integrated Forecasting System [IFS; ECMWF (2023)], and their ocean
138 components at eddy-resolving resolutions: ICON-O (Korn et al., 2022) coupled with ICON
139 and Finite-Element/volumE Sea ice-Ocean Model [FESOM; Q. Wang et al. (2014)] and

140 Nucleus for European modeling of the Ocean [NEMO; Madec and the NEMO System

11 Team (2023)] coupled with IFS. The project has so far produced ICON and IFS simu-

142 lations with three development versions called Cycle 1-3 and a pre-final version, with

13 a final production version planned by the end of the project. nextGEMS is not the only

144 project developing GSRMs; other GSRMs (or GSRM versions of climate models) cur-

145 rently in development include: Convection-Permitting Simulations With the E3SM Global
146 Atmosphere Model [SCREAM; Caldwell et al. (2021)], Non-hydrostatic Icosahedral At-

17 mospheric Model [NICAM; Satoh et al. (2008)], Unified Model (UM), eXperimental Sys-
148 tem for High-resolution modeling for Earth-to-Local Domain [X-SHiELD; SHiELD au-

149 thors team (2024)], Action de Recherche Petite Echelle Grande Echelle-NonHydrostatic

150 version [ARPEGE-NH; Bubnova et al. (1995); Voldoire et al. (2017)], Finite-Volume Dy-
151 namical Core on the Cubed Sphere [FV3, Lin (2004)], the National Aeronautics and Space
152 Administration (NASA) Goddard Earth Observing System global atmospheric model

153 version 5 [GEOS5; Putman and Suarez (2011)], Model for Prediction Across Scales [MPAS;
154 Skamarock et al. (2012)], and System for Atmospheric Modeling [SAM; Khairoutdinov

155 and Randall (2003)].

156 Multiple cloud properties have an effect on shortwave (SW) and longwave (LW)

157 radiation. To first order, the total cloud fraction, cloud phase, and the liquid and ice wa-

158 ter path (LWP and IWP) are the most important cloud properties influencing SW and

150 LW radiation. These properties are in turn influenced by the atmospheric thermodynam-

160 ics, convection and circulation, and both the indirect and direct effects of aerosols. Second-

161 order effects on SW and LW radiation are associated with the cloud droplet size distri-

162 bution, ice crystal habit, cloud lifetime, and direct radiative interaction with aerosols (Boucher

163 et al., 2013). In the 6" phase of the Coupled Model Intercomparison Project [CMIP6;
164 Eyring et al. (2016)], the cloud feedback has increased relative to CMIP5 (Zelinka et al.,
165 2020), especially in the Southern Hemisphere mid-to-high latitudes, which is one of the

166 main reasons for the higher climate sensitivity of CMIP6 models.

167 The SO is known to be a problematic region for climate model biases (A. J. Schud-
168 deboom & McDonald, 2021; Hyder et al., 2018; Cesana et al., 2022; Zhao et al., 2022)

169 due to a lack of surface and in situ observations. This region has also long been a lower
170 priority region for numerical weather prediction (NWP) and climate model development
1 because of its distance from populated areas. Nevertheless, radiation biases and changes
172 over an area of its size have a substantial influence on the global climate (Rintoul, 2011;
173 Bodas-Salcedo et al., 2012), such as affecting the Earth’s radiation balance, ocean heat,
174 and carbon uptake (R. G. Williams et al., 2023), and the SO is also an important part

175 of the global ocean conveyor belt (C. Wang et al., 2014). In general, marine clouds have
176 a disproportionate effect on top-of-atmosphere (TOA) SW radiation due to the relatively
77 low albedo of the sea surface. The relative longitudinal symmetry of the SO means that
178 model cloud biases tend to be similar across longitudes.

179 In the following text, we refer to the SO as ocean regions south of 40°S, low-latitude
180 SO as 40-55°S, and high-latitude SO as south of 55°S, all the way to the Antarctic coast.
181 The reason for this dividing latitude is to split the SO into about two equal zones, as well

182 as the results by A. J. Schuddeboom and McDonald (2021) (Fig. 2b) which show a con-
183 trast in CMIP model radiation biases. A. Schuddeboom et al. (2019) (Fig. 2) and Kuma
184 et al. (2020) (Fig. 3) also show contrasting radiation biases in the Hadley Centre Global
185 Environmental Model, which is also supported by Cesana et al. (2022), displaying con-
186 trasting cloud biases due to the 0°C isotherm reaching the surface at 55°S. The findings
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of Niu et al. (2024), however, support a different dividing line of 62°S based on cloud con-
densation nuclei concentration.

SO radiation biases have been relatively large and systematic compared to the rest
of the globe since at least CMIP3 (Trenberth & Fasullo, 2010; Bodas-Salcedo et al., 2012),
and the SO SW cloud radiative effect bias is still positive in eight CMIP6 models an-
alyzed by A. J. Schuddeboom and McDonald (2021) over the high-latitude SO, whereas
over the low-latitude SO it tends to be more neutral or negative in some models. Too
much absorbed SW radiation over the SO was also identified in the GSRM SCREAM
(Caldwell et al., 2021). Compensating biases are possible, such as the “too few too bright”
cloud bias, characterized by too small a cloud fraction and too large a cloud albedo (Wall
et al., 2017; Kuma et al., 2020), previously described by Webb et al. (2001), Weare (2004),
M. H. Zhang et al. (2005), Karlsson et al. (2008), Nam et al. (2012), Klein et al. (2013),
and Bender et al. (2017) in other regions and models, which means that a model can main-
tain a reasonable SW radiation balance by reflecting too much SW radiation from clouds,
but these cover too small an area. A study by Konsta et al. (2022) showed that this type
of bias is still present in six analyzed CMIP6 models in tropical marine clouds, using the
General-circulation-model-Oriented CALIPSO Cloud Product [CALIPSO-GOCCP; Chepfer
et al. (2010)] and Polarization & Anisotropy of Reflectances for Atmospheric Sciences
coupled with Observations from a Lidar [PARASOL; Lier and Bach (2008)] as a refer-
ence. They suggest improper simulation of subgrid-scale cloud heterogeneity as a cause.
Compensating cloud biases in the Australian Community Climate and Earth System Sim-
ulator (ACCESS) — Atmosphere-only model version 2 (AM2) over the SO were analyzed
by Fiddes et al. (2022) and Fiddes et al. (2024). Possner et al. (2022) showed that over
the SO, the DYAMOND GSRM ICON underestimates low-level cloud fraction on the
order of 30% and overestimates net downward TOA SW radiation by approximately 10
Wm~? in the highest model resolution run (2.5 km). Zhao et al. (2022) reported a sim-
ilar SW radiation bias in five analyzed CMIP6 models over the high-latitude SO and an
underestimation of the total cloud fraction on the order of 10% over the entire 40-60°S
SO. Recently, Ramadoss et al. (2024) analyzed 48 hours of km-scale ICON limited-area
model NWP simulations over an SO region adjacent to Tasmania against the Clouds,
Aerosols, Precipitation, Radiation, and atmospherlc Composition Over the southeRn oceaN
(CAPRICORN) voyage cloud and precipitation observations (McFarquhar et al., 2021).
They found the ICON cloud optical thickness was underestimated relative to Himawari-
8 satellite observations but also identified large differences in cloud top phase.

In general, sea surface temperature (SST) biases in the SO can originate either in
the atmosphere (Hyder et al., 2018), caused by too much SW heating of the surface or
too little LW cooling of the surface, such as in situations of too much cloud cover or cloud
optical thickness, or in the ocean circulation. Interactions of both are also possible; for
example, SST affecting clouds and clouds affecting the surface radiation. Using ERA5
as a reference, Q. Zhang et al. (2023) have shown that SST biases have improved in CMIP6
compared to CMIP5, with SST overall increasing in CMIP6. However, over the SO, this
resulted in an even higher positive bias, especially in the Atlantic Ocean (AO) sector of
the SO, increasing by up to 1°C. Luo et al. (2023) identified that the SO SST bias in an
ensemble of 18 CMIP6 models originates not from the surface heat and radiation fluxes
(using reanalyses as a reference) but from a warm bias in the Northern Atlantic Deep
Water.

The organization of this study is as follows. In Section 2 we introduce our SO voy-
age and station dataset, the ceilometers, the lidar simulator software used in our com-
parison, the ICON model and MERRA-2 and ERAD5 reanalyses, a satellite dataset used,
a precipitation detection algorithm developed for profile filtering, and a data partition-
ing method based on cyclonic activity and stability. Our results, presented in Section
3, consist of analyses of cloud occurrence by height and daily cloud cover from lidar ob-
servations and the lidar simulator; TOA radiation, LWP, and IWP from satellite obser-
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vations and the model and reanalysis output; and vertical profiles of relative humidity
(RH) and potential temperature from a large set of radiosonde observations and the model
and reanalysis output. Lastly, we discuss limitations of our study in Section 4 and state
the conclusions in Section 5.

2 Methods
2.1 Voyage and Station Data

Together, we analyzed data from 31 voyages of RV Polarstern, the resupply ves-
sel (RSV) Aurora Australis, RV Tangaroa, RV Nathaniel B. Palmer, Her (now His) Majesty’s
New Zealand Ship (HMNZS) Wellington, and one sub-Antarctic station (Macquarie Is-
land) in the SO south of 40°S between 2010 and 2021. Fig. 1 shows a map of the cam-
paigns, Table 1 lists the campaigns, and Table 2 lists references where available. The an-
alyzed dataset comprised 2421 days of data south of 40°S, but the availability of ceilome-
ter data was slightly shorter due to gaps in measurements.

@ | C"””‘”’V"YL — RV Tangaroa (b)
PO > —— HMNZS Wellington
/f"+-.._— NB Palmer

— RSV Aurora Australis

— RV Polarstern
Macquarie Is.

" South Georgiag
.+ South Sandwigh

Figure 1. (a) A map showing the tracks of 31 voyages of RV Polarstern, RSV Aurora Aus-
tralis, RV Tangaroa, RV Nathaniel B. Palmer, and HMNZS Wellington and one sub-Antarctic
station (Macquarie Island) analyzed here. The tracks cover Antarctic sectors south of South
America, the Atlantic Ocean, Africa, Australia, and New Zealand in the years 2010-2021 (inclu-
sive). The dotted and dashed lines at 40°S and 55°S delineate the Southern Ocean area of our
analysis and its partitioning into two subsets, respectively. A photo of (b) RV Polarstern ((C)
Folke Mehrtens, Alfred-Wegener-Institut), (c) Lufft CHM 15k installed on RV Tangaroa (©
Peter Kuma, University of Canterbury), (d) Vaisala CL51 ((©) Jeff Aquilina, Bureau of Meteo-
rology), (e) Vaisala CT25K at Macquarie Island ((© Simon P. Alexander, Australian Antarctic

Division).



253 The campaigns contained ceilometer observations captured by the Vaisala CL51,
254 CT25K, and the Lufft CHM 15k, described in detail below (Sections 2.2 and 2.3). A ceilome-

255 ter is a low-power, near-infrared, vertically pointing lidar principally designed to mea-

256 sure cloud base, but they also measure the full vertical structure of clouds as long as the
257 laser signal is not attenuated by thick clouds, which can be used to infer additional in-
258 formation such as a cloud mask and cloud occurrence by height. We note that during

250 the MICRE campaign, the ceilometers Vaisala CT25K and CL51 were installed at the

260 Macquarie Island station concurrently, but in our analysis we only used the CT25K data

261 obtained from the Atmospheric Radiation Measurement (ARM) data archive.

262 Apart from lidar observations, radiosondes were launched on weather balloons at

263 regular synoptic times on the RV Polarstern, MARCUS, NBP17024, TAN1702, and TAN1802
264 campaigns, measuring pressure, temperature, RH, and the global navigation satellite sys-

265 tem coordinates. In total, about 2300 radiosonde profiles south of 40°S were available.

266 Spatially and temporally collocated profiles were taken from the model and reanalyses.

267 Because the time period covered by the ICON model output (2021-2024) was different
268 from the time period covered by the observations (2010-2021), when comparing with ICON,

269 we first had to remap the observation time to model time by taking the same time rel-

270 ative to the start of the year. Consequently, we also had four virtual/model profiles (one
o for each year from 2021 to 2024) for each observed profile. Derived thermodynamic [vir-
22 tual potential temperature (6, ), lifting condensation level (LCL), etc.] and dynamic phys-
273 ical quantities (wind speed and direction) for the measured vertical profiles were calcu-

274 lated with the program radiosonde tool [rstool; Kuma (2024d)]. Surface meteorological

o15 quantities were measured continuously by an onboard automatic weather station or in-

276 dividual instruments.

217 Some of the observational data were likely used in the assimilation of the reanal-

278 yses. The Macquarie Island station surface measurements and radiosonde profiles (not

279 used in our analysis) were sent to the World Meteorological Organization Global Telecom-
280 munication System (GTS). The measurements on the RSV Aurora Australis and HMNZS
281 Wellington were not used outside of research purposes. The AWS measurements, but

282 not lidar or radiosonde measurements on the RV Tangaroa voyages, were collected by

283 the New Zealand MetService and communicated to the GTS. The ceilometer measure-

284 ments on NBP1704 were not used outside of research purposes.

25 2.2 Vaisala CL51 and CT25K

286 The Vaisala CL51 and CT25K (photos in Fig. 1d, e) are ceilometers operating at

287 near-infrared wavelengths of 910 nm and 905 nm, respectively. The CL51 can also be

288 configured to emulate the Vaisala CL31. The maximum range is 15.4 km (CL51), 7.7 km
289 (CL31 emulation mode with 5 m vertical resolution), and 7.5 km (CT25K). The verti-

290 cal resolution is 10 m (5 m configurable) in CL51 and 30 m in CT25K observations. The
201 sampling (temporal) resolution is configurable, and in our datasets, it is approximately
202 6 s for CL51 on AA15-16, 16 s for CT25K on MARCUS and MICRE, 36 s for CL51 on
203 RV Polarstern, and about 2.37 s for CL51 with CL31 emulation on TAN1502. The wave-
204 lengths of 905 and 910 nm are both affected by water vapor absorption of about 20%

205 in the mid-latitudes (Wiegner & Gasteiger, 2015; Wiegner et al., 2019), with 910 nm af-
206 fected more strongly, but we do not expect this to be a significant issue, as explained in
297 Kuma et al. (2021). The instrument data files containing raw uncalibrated backscatter
208 were first converted to the Network Common Data Form (NetCDF) with cl2nc (Kuma,
209 2024c) and then processed with the ALCF (Section 2.4) to produce absolutely calibrated

300 attenuated volume backscattering coeflicient (AVBC), cloud mask, cloud occurrence by
301 height, and the total cloud fraction. Because the CT25K uses a very similar wavelength
302 to the CL51, equivalent calculations as for the CL51 were done assuming a wavelength

303 of 910 nm. The Vaisala CL51 and CT25K instruments were used on most of the voy-



Table 1. An overview of the analyzed campaigns (voyages and stations). Start, end, and the

number of days (UTC; inclusive) refer to the time period when the vessel was south of 40°S.
Abbreviations: ceilometer (ceil.), Australia (AU), New Zealand (NZ), South America (SA),
Atlantic Ocean (AQO), and Africa (AF). The number of days is rounded to the nearest integer.
CL51/31 indicates CL51 configured to emulate CL31. Missing days in the ceilometer data were
HMNZSW16 (7 days): 24-27 November, 10 December, and 16-17 December 2016; MARCUS
(3 days): 8, 10 November, and 10 December 2017; MICRE (9 days): 7-8, 29 June, 5, 16 July,
15 August, 17 October 2016, 11 February, and 21 March 2017; and TAN1502 (1 day): 24 Jan-

uary.
Name Vessel or station Ceil. Region Start End Days
AA15-16 RSV Aurora Australis CL51 AU 2015-10-22  2016-02-22 124
HMNZSW16 HMNZS Wellington CHM 15k NZ 2016-11-23  2016-12-19 27
MARCUS RSV Aurora Australis CT25K AU 2017-10-29  2018-03-26 149
MICRE Macquarie Is. station CT25K AU/NZ 2016-04-03  2018-03-14 710
NBP1704 RV Nathaniel B. Palmer ~CHM 15k NZ 2017-04-14  2017-06-08 55
PST77/2 RV Polarstern CL51 SA/AO/AF  2010-12-01 2011-02-04 65
PS77/3 RV Polarstern CL51 SA/AO/AF  2011-02-07 2011-04-14 66
PS79/2 RV Polarstern CL51 SA/AO/AF  2011-12-06 2012-01-02 27
PS79/3 RV Polarstern CL51 SA/AO/AF  2012-01-10 2012-03-10 61
PS79/4 RV Polarstern CL51 SA/AO/AF  2012-03-14 2012-04-08 26
PS81/2 RV Polarstern CL51 SA/AO/AF 2012-12-02 2013-01-18 47
PS81/3 RV Polarstern CL51 SA/AO/AF 2013-01-22 2013-03-17 55
PS81/4 RV Polarstern CL51 SA/AO/AF 2013-03-18 2013-04-16 30
PS81/5 RV Polarstern CL51 SA/AO/AF  2013-04-20 2013-05-23 33
PS81/6 RV Polarstern CL51 SA/AO/AF  2013-06-10 2013-08-12 63
PS81/7 RV Polarstern CL51 SA/AO/AF  2013-08-15 2013-10-14 60
PS81/8 RV Polarstern CL51 SA/AO/AF 2013-11-12 2013-12-14 31
PS81/9 RV Polarstern CL51 SA/AO/AF  2013-12-21 2014-03-02 71
PS89 RV Polarstern CL51 SA/AO/AF 2014-12-05 2015-01-30 56
PS96 RV Polarstern CL51 SA/AO/AF 2015-12-08 2016-02-14 68
PSo7 RV Polarstern CL51 SA/AO/AF  2016-02-15 2016-04-06 52
PS103 RV Polarstern CL51 SA/AO/AF 2016-12-18  2017-02-02 46
PS104 RV Polarstern CL51 SA/AO/AF  2017-02-08 2017-03-18 39
PS111 RV Polarstern CL51 SA/AO/AF 2018-01-21 2018-03-14 52
PS112 RV Polarstern CL51 SA/AO/AF  2018-03-18 2018-05-05 49
PS117 RV Polarstern CL51 SA/AO/AF 2018-12-18  2019-02-07 51
PS118 RV Polarstern CL51 SA/AO/AF  2019-02-18 2019-04-08 50
PS123 RV Polarstern CL51 SA/AO/AF  2021-01-10 2021-01-31 21
PS124 RV Polarstern CL51 SA/AO/AF  2021-02-03 2021-03-30 55
TAN1502 RV Tangaroa CL51/31 NZ 2015-01-20  2015-03-12 51
TAN1702 RV Tangaroa CHM 15k NZ 2017-03-09  2017-03-31 23
TAN1802 RV Tangaroa CHM 15k NZ 2018-02-07  2018-03-20 41
Total 2421
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Table 2. Campaign publication references.

Name References

AA15-16 Klekociuk et al. (2020)

MARCUS  McFarquhar et al. (2021); Xia and McFarquhar (2024); Niu et al. (2024)

MICRE McFarquhar et al. (2021)

NBP1704  Ackley et al. (2020)

PS77/2 Konig-Langlo (2011e, 2011a, 2011c, 2014h); Fahrbach and Rohardt (2011)

PS77/3 Konig-Langlo (2011d, 2011b, 2012g, 2014i); Knust and Rohardt (2011)

PS79/2 Konig-Langlo (2012h, 2012d, 2012a, 2014j); Kattner and Rohardt (2012)

PS79/3 Koénig-Langlo (20121, 2012b, 2012e, 2014k); Wolf-Gladrow and Rohardt (2012)

PS79/4 Konig-Langlo (2012, 2012¢, 2012f, 20141); Lucassen and Rohardt (2012)

PS81/2 Konig-Langlo (20131, 2013a, 2013f, 2014a); Boebel and Rohardt (2013)

PS81/3 Konig-Langlo (2013m, 2013g, 2013b, 2014b); Gutt and Rohardt (2013)

PS81/4 Konig-Langlo (2013n, 2013c, 2013h, 2014¢); Bohrmann and Rohardt (2013)

PS81/5 Konig-Langlo (20130, 2013d, 20131, 2014d); Jokat and Rohardt (2013)

PS81/6 Konig-Langlo (2013p, 2013e, 2013j, 2014¢); Lemke and Rohardt (2013)

PS81/7 Konig-Langlo (2013q, 2013k, 2014f, 2016¢); Meyer and Rohardt (2013)

PS81/8  Konig-Langlo (20131, 2014g, 2014n, 2014p); Schlindwein and Rohardt (2014)

PS81/9  Konig-Langlo (2014r, 2014m, 20140, 2014q); Knust and Rohardt (2014)

PS89 Konig-Langlo (2015a, 2015d, 2015b, 2015¢); Boebel and Rohardt (2016)

PS96 Konig-Langlo (2016h, 2016a, 2016d, 2016f); Schroder and Rohardt (2017)

PS97 Konig-Langlo (20161, 2016e, 2016b, 2016g); Lamy and Rohardt (2017)

PS103 Konig-Langlo (2017f, 2017d, 2017a, 2017¢); Boebel and Rohardt (2018)

PS104 Konig-Langlo (2017e, 2017g, 2017b); Gohl and Rohardt (2018); Schmithiisen (2021g)

PS111 Schmithiisen (2019a, 2020a, 2021h, 2021a); Schroder and Rohardt (2018)

PS112 Schmithiisen (2019b, 2020b, 2021b, 2021i); Meyer and Rohardt (2018)

PS117 Schmithiisen (2019¢, 2020c, 2021j, 2021c); Boebel and Rohardt (2019)

PS118 Schmithiisen (2019d, 2020d, 2021d, 2021k); Dorschel and Rohardt (2019)

PS123 Schmithiisen (2021m, 2021e, 20211); Schmithiisen, Jens, and Wenzel (2021); Hoppmann, Tippen-
hauer, and Heitland (2023)

PS124 Schmithiisen (2021n, 2021f); Schmithiisen, Rohleder, et al. (2021); Hoppmann, Tippenhauer, and
Hellmer (2023)

TAN1802  Kremser et al. (2020, 2021)

ages and stations analyzed here. Fig. 2a shows an example of AVBC derived from the
CL51 instrument data.

2.3 Lufft CHM 15k

The Lufft CHM 15k (photo in Fig. 1c) ceilometer operates at a near-infrared wave-
length of 1064 nm. The maximum range is 15.4 km; the vertical resolution is 5 m in the
near range (up to 150 m) and 15 m above; the sampling (temporal) resolution is 2 s; and
the number of vertical levels is 1024. NetCDF files containing uncalibrated backscatter
produced by the instrument were processed with the ALCF (Section 2.4) to produce AVBC,
cloud mask, cloud occurrence by height, and the total cloud fraction. The CHM 15k was
used on four voyages (HMNZSW16, TAN1702, TAN1802, and NBP1704).
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(a) PS81/3 CL51 (observed)
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Height (km)

(b) PS81/3 ERA5 CL51 (simulated)
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Figure 2. An example of the attenuated volume backscattering coefficient (AVBC) (a) mea-
sured by the CL51 during 24 hours on the PS81/3 voyage and (b) an equivalent AVBC simulated
with the ALCF from ERA5 data during the same time period. The red line identifies the cloud
mask determined by the ALCF.

2.4 ALCF

The Automatic Lidar and Ceilometer Framework (ALCF) is a ground-based lidar
simulator and a tool for processing observed lidar data, supporting various instruments
and models (Kuma et al., 2021). It performs radiative transfer calculations to derive equiv-
alent lidar AVBC from an atmospheric model or a reanalysis, which can then be com-
pared with observed AVBC. For this purpose, it takes the cloud fraction, liquid and ice
mass mixing ratio, temperature, and pressure fields as an input and is run offline (on the
model or reanalysis output rather than inside the model code). The lidar simulator in
the ALCEF is based on the instrument simulator Cloud Feedback Model Intercompari-
son Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011).
After AVBC is calculated, a cloud mask, cloud occurrence by height, and the total cloud
fraction are determined. The total cloud fraction is defined as the fraction of profiles with
clouds at any height in the lidar cloud mask. The ALCF has in the past been used by
several research teams for model and reanalysis evaluation (Kuma et al., 2020; Kremser
et al., 2021; Guyot et al., 2022; Pei et al., 2023; Whitehead et al., 2023; McDonald, Kuma,
et al., 2024).

Absolute calibration of the observed backscatter was performed by comparing the
measured clear-sky molecular backscatter statistically with simulated clear-sky molec-
ular backscatter. AVBC was resampled to 5 min temporal resolution and 50 m vertical
resolution to increase the signal-to-noise ratio while having enough resolution to detect
small-scale cloud variability. The noise standard deviation was calculated from AVBC
at the highest range, where no clouds are expected. A cloud mask was calculated from
AVBC using a fixed threshold of 2 x 10~®m~!sr~! after subtracting 5 standard devia-
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tions of range-scaled noise. Fig. 2b shows an example of simulated Vaisala CL51 backscat-
ter from ERAS data, corresponding to a day of measurements by the instrument on the
PS81/3 voyage.

How attenuation of the lidar signal affects cloud detection is dependent on factors
such as the optical thickness of the measured cloud and its backscattering phase func-
tion, as well as the range-dependent noise standard deviation (Kuma et al., 2021). A rough
estimate can be made under an assumption of a relatively strongly backscattering cloud
of B = 100 x 107 %m~'sr~! at a height of r; = 2 km, range-dependent noise 8, at o
= 8 km of about 5 x 107%m~!sr~!, and cloud detection threshold B; = 2 x 10~ 5m~1sr—!,
noise multiplication factor f = 5. At full attenuation (relative to the detection thresh-

2
old), the two-way attenuation factor A satisfies AS = B+ fx G, (T—l) . This is equiv-

ro
alent to exponential decay (A = e~2%) with optical depth & (at the lidar wavelength)
of about 1.7.

2.5 ICON

A atmosphere-ocean coupled GSRM version of the ICON model is in development
as part of the next GEMS project (Hohenegger et al., 2023). ICON is a very flexible model,
allowing for simulations ranging from coarse-resolution ESM simulations, GSRM sim-
ulations, limited area model simulations, and large eddy simulations (LES) for both weather

prediction and climate projections. ICON uses the atmospheric component ICON-A (Giorgetta

et al., 2018), whose physics is derived from ECHAMS6 (Stevens et al., 2013), and the ocean
component ICON-O (Korn et al., 2022). Earlier runs of the GSRM ICON from DYA-
MOND were evaluated by Mauritsen et al. (2022).

Here, we use a free-running (i.e., the weather conditions in the model do not cor-
respond to reality) coupled GSRM simulation made for the purpose of climate projec-
tion. nextGEMS has so far produced four cycles of model runs. We used a Cycle 3 run
ngc3028 produced in 2023 (Koldunov et al., 2023; next GEMS authors team, 2023) for
a model time period of 20 January 2020 to 22 July 2025, of which we analyzed the pe-
riod 2021-2024 (inclusive). The horizontal resolution of nge3028 is about 5 km. The model
output is available on 90 vertical levels and 3-hourly instantaneous temporal resolution.

Unlike current general circulation models, the storm-resolving version of ICON does
not use convective and cloud parameterization but relies on explicit simulation of con-
vection and clouds on the model grid. Subgrid-scale clouds are not resolved, and the grid
cell cloud fraction is always either 0 or 100%. While this makes the code development
simpler without having to rely on uncertain parameterizations, it can miss smaller-scale
clouds below the grid resolution. Turbulence and cloud microphysics have to be param-
eterized in this model as in other models, and aerosols are derived from a climatology.

To account for the radiative effects of subgrid-scale clouds, a cloud inhomogeneity fac-

tor is introduced in the model, which scales down the cloud liquid water for radiative
calculations. It ranges from 0.4 at lower tropospheric stability (LTS) of 0 K to 0.8 at 30 K.
In addition, turbulent mixing in the Smagorinsky scheme was adjusted to allow mixing

or entrainment in situations of no mixing under the traditional scheme, affecting stra-
tocumulus clouds but not trade wind clouds (Segura et al., 2025).

Because the analyzed ICON simulation was free-running (years 2021-2024, inclu-
sive), weather and climate oscillations [such as the El Nifio-Southern Oscillation (ENSO)
phase] are not expected to be equivalent to reality. To compare with the observations
collected during a different time period (years 2010-2021, inclusive), we compared the
model output with observations at the same time of year and geographical location, as
determined for each data point, such as a lidar profile or a radiosonde launch. In the ALCF,
this was done using the override_year option.
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Due to our comparison being long-term and large-scale, it is expected that a com-
parison between the free-running model and observations is statistically robust, despite
weather-related differences between the two. Furthermore, the results from multiple cam-
paigns are combined in a way that equal statistical weight is given to each campaign,
eliminating an outsize influence of longer campaigns, allowing us to estimate uncertainty
ranges under the assumption of independence of weather conditions between the cam-
paigns, and ensuring that the results are statistically representative over the whole area
covered by the campaigns. Different approaches to a comparison would be possible. For
example, one could use only the first several days of a free-running simulation initialized
from observations (or a reanalysis) for a comparison, as done in the Transpose-AMIP
experiments (K. D. Williams et al., 2013), thus being able to compare clouds and the
physical drivers under the same weather conditions. Another possibility is the use of a
model nudged to a reanalysis (Kuma et al., 2020), but this was not available for our ICON
simulations. We discuss further the implications of comparing the observations with a
free-running model in Section 4.

2.6 MERRA-2

The Modern-Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) is a reanalysis produced by the Global Modeling and Assimilation Office
at the NASA Goddard Space Flight Center (Gelaro et al., 2017). It uses version 5.12.4
of the Goddard Earth Observing System (GEOS) atmospheric model (Rienecker et al.,
2008; Molod et al., 2015). Non-convective clouds (condensation, autoconversion, and evap-
oration) are parameterized using a prognostic scheme (Bacmeister et al., 2006), and sub-
grid cloud fraction is determined using total water distribution and a critical RH thresh-
old. The reanalysis output analyzed here is available at a spatial resolution of 0.5° of lat-
itude and 0.625° of longitude, which is about 56 km in the north-south direction and 35
km in the east—west direction at 60°S. The number of vertical model levels is 72. Here,
we use the following products: 1-hourly instantaneous 2D single-level diagnostics (M2I1INXASM)
for 2-m temperature and humidity; 3-hourly instantaneous 3D assimilated meteorolog-
ical fields (M2I3NVASM) for cloud quantities, pressure, and temperature; 1-hourly av-
erage 2D surface flux diagnostics (M2T1INXFLX) for precipitation; and 1-hourly aver-
age 2D radiation diagnostics (M2T1NXRAD) for radiation quantities (Bosilovich et al.,
2016). Vertically resolved fields in M2I3NVASM start at a height of about 60 m, which
limits our analysis of fog and very low-level (< 250 m) clouds in this reanalysis.

2.7 ERAS5

ERA5 (ECMWEF, 2019) is a reanalysis produced by the ECMWF. It is based on
an NWP model IFS version CY41R2. It uses the Tiedtke (1993) prognostic cloud scheme
and the Forbes and Ahlgrimm (2014) scheme for mixed-phase clouds. The horizontal res-
olution is 0.25° in latitude and longitude, which is about 28 km in the north-south di-
rection and 14 km in the east—west direction at 60°S. Internally, the model uses 137 ver-
tical levels. Here, we use output at 1-hourly instantaneous time intervals, except for ra-
diation quantities, which are accumulations (from these we calculate daily means). Ver-
tically resolved quantities are available on 37 pressure levels.

2.8 CERES

TOA radiation quantities are taken from the Clouds and the Earth’s Radiant En-
ergy System (CERES) instruments onboard the Terra and Aqua satellites (Wielicki et
al., 1996; Loeb et al., 2018). In our analysis, we used the adjusted all-sky SW and LW
upwelling fluxes at TOA, adjusted cloud LWP and IWP, and adjusted cloud amount from
the synoptic TOA and surface fluxes and clouds 1-degree daily edition 4A product (CER-SYN1ldeg-
Day_Terra-Aqua-MODIS_Edition4A) (Doelling et al., 2013, 2016). The water paths in
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the product are computed from optical depth and particle size from geostationary satel-
lites and the Moderate Resolution Imaging Spectroradiometer [MODIS, Pagano and Durham
(1993)] (CERES author team, 2025). The water paths were multiplied by the cloud amount
to get the water path relative to the whole grid cell area, equivalent to the definition used
in ICON and the reanalyses.

Radiation and water path calculations presented in the results (Section 3) were com-
pleted such that they always represent daily means in order to be consistent with the
CERES SYN1deg data. Therefore, every instantaneous profile in the simulated lidar data
was assigned a daily mean radiation and water path value corresponding to the day (in
the Coordinated Universal Time; UTC). In turn, the average radiation and water paths
during the entire voyage or station observation period were calculated as averages of the
profile values. In the observed lidar data, the daily mean values were taken from the spa-
tially and temporally co-located CERES SYNldeg data for the day (in UTC). The voy-
age and station averages were calculated in the same way.

2.9 Precipitation Identification Using Machine Learning

Precipitation can cause strong enough lidar backscattering to be recognized as clouds
by the threshold-based cloud detection method used in the ALCF. This is undesirable
if equivalent precipitation backscatter is not included in the simulated lidar profiles. It
was not possible to include precipitation simulation in the ALCF due to the absence of
required fields of liquid and ice precipitation mass mixing ratios in the model and reanal-
ysis output. While the fields could in principle be calculated from surface fluxes, such
a calculation would be highly uncertain. The required radiation calculations for precip-
itation are also currently not implemented in the ALCF, even though this is a planned
future addition. In order to achieve a fair comparison of observations with the model and
reanalysis output, we exclude observed and simulated lidar profiles with precipitation,
either manually or using an automated method. It is relatively difficult to distinguish
precipitation backscatter from cloud backscatter in lidar observations, especially when
only one wavelength channel and no polarized channel are available (Kim et al., 2020).
In the model and reanalyses, the same can be accomplished relatively easily by exclud-
ing profiles exceeding a certain surface precipitation flux. In the observations, using pre-
cipitation flux measurements from rain gauges can be very unreliable on ships due to ship
movement, turbulence caused by nearby ship structures, and sea spray. Our analysis of
rain gauge data from the RV Tangaroa showed large discrepancies between the rain gauge
time series and human-performed synoptic observations, as well as large inconsistencies
in the rain gauge time series. Human-performed observations of precipitation presence
or absence are expected to be reliable but only cover a limited set of times. Therefore,
it was desirable to implement a method of detecting precipitation from observed backscat-
ter profiles alone.

On the RV Polarstern voyages, regular manual synoptic observations were avail-
able and included precipitation presence or absence and type. We used this dataset to
train a convolutional artificial neural network (ANN) to recognize profiles with precip-
itation from lidar backscatter data (Fig. 3a), implemented in the TensorFlow ANN frame-
work (Abadi et al., 2015). Samples of short time intervals (10 min) of very low-level li-
dar backscatter (0-250 m) were classified as clear, rain, snow, and fog, using the synop-
tic observations as a training dataset (Fig. 3b). From these, a binary, mutually exclu-
sive classification of profiles as precipitating (rain or snow) or dry (clear or fog) was de-
rived. For detecting model and reanalysis precipitation, we used a fixed threshold for sur-
face precipitation flux of 0.1 mm h™! (the ANN was not used).

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate
(26%) was made to match observations. The receiver operating characteristic curve is
shown in Fig. 3c. We considered these rates satisfactory for the purpose of filtering pre-
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cipitation profiles. Fig. 3d shows examples of the predicted precipitation compared to
human-performed observations. The main ANN (‘ANN* in Fig. 3) was trained on all data,
and ancillary ANNs (‘ANN2‘ in Fig. 3) were trained with portions of voyage data ex-
cluded to test the results for each voyage.

2.10 Partitioning by Cyclonic Activity and Stability

In our analysis, we partitioned our dataset by cyclonic activity and stability into
multiple subsets to evaluate cloud biases in the context of the main physical controlling
processes. The SO is a region of the occurrence of both extratropical and polar cyclones.
Cyclonic activity results in cloud formation at the air mass boundaries along the cold
and warm fronts, as well as inside the cold sector, after a passing cold sector destabilizes
the atmosphere relative to the surface temperature. In the cold front and cold sector,

(a) ANN diagram
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(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0-250 m (vertical axis)
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Figure 3. Artificial neural network (ANN) for prediction of precipitation in lidar backscat-
ter. (a) Diagram showing the TensorFlow structure of the ANN, (b) randomly selected example
samples of very low-level (0-250 m) backscatter in four categories (clear, fog, rain, and snow),

as determined by coincident manual weather observations, (c) receiver operating characteristic
diagram of the ANN, (d) examples of 10-day time series of human-observed (“HUM”) and pre-
dicted precipitation based on an ANN trained on all voyages (“ANN”) and all voyages except
for the shown voyage (“ANN2”) during three randomly selected voyages with the available data.
Here, by “randomly selected,” we mean selected from the top of a permutation generated by a

pseudo-random number generator to prevent authors’ bias in the selection.
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clouds are convectively driven, including deep convection, and the advection of colder

air masses over warmer ocean surfaces can trigger convection and subsequent cloud for-
mation. In contrast, warm advection can trigger fog or cloud formation by boundary layer
air cooled by the ocean surface until it reaches saturation. More quiescent areas outside

of cyclones can also be associated with clouds. These can be, for example, associated with
clouds formed by warm or cold advection outside of cyclones, persistent clouds, clouds
formed due to diurnal heating or cooling, or clouds formed due to ocean currents. Bound-
ary layer stability can be expected to be associated with clouds by either allowing con-
vection and turbulence under weak stability, inhibiting convection turbulence under strong
stability, and by capping inversion controlling the cloud top height or trapping moist air
near the surface and preventing fog dispersion. Therefore, dividing our dataset by these
subsets allows us to quantify model and reanalysis biases associated with some of the
main physical processes controlling cloud formation, persistence, and dissipation. Other
methods of subsetting, such as using the International Satellite Cloud Climatology Project
(ISCCP) pressure—optical thickness diagram (Rossow & Schiffer, 1991, 1999; Hahn et al.,

2001) to separate profiles by cloud regimes and other cloud regime classifications (Oreopoulos

et al., 2016; A. Schuddeboom et al., 2018), would be feasible.

We partitioned our data into two mutually exclusive subsets by cyclonic activity.
For this purpose, we used a cyclone tracking algorithm to identify extratropical cyclones
and polar cyclones over the SO in the reanalysis and ICON data. We used the open-source
cyclone tracking package CyTRACK (Pérez-Alarcén et al., 2024). Generally, what con-
stitutes an extratropical cyclone is considered relatively arbitrary due to the very large
variability of the cyclones (Neu et al., 2013). The CyTRACK algorithm uses mean sea
level pressure and wind speed thresholds as well as tracking across time steps to iden-
tify cyclone centers and their radii in each time step. With this information, we could
classify every location at a given time as either cyclonic or non-cyclonic. Due to a rel-
atively small total area covered by cyclones, as identified by the cyclone center and ra-
dius, for every time step and cyclone, we defined a cyclonic area as a circle of double the
radius identified by CyTRACK centered at the cyclone center. All other areas were de-
fined as non-cyclonic. For identifying cyclones in the observations and the reanalyses,
ERAS5 pressure and wind fields were used as the input to CyTRACK. This is justified
by the fact that the large-scale pressure and wind fields in ERA5 are likely sufficiently
close to reality. McErlich et al. (2023) have shown that wind is simulated well in ERA5

(a) ERAS (b) MERRA-2

weak stability strong stability weak stability strong stability
1400 -

4000
1200 -

3000 4 1000 -

800

Frequency

2000 6004

400 -
1000
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15
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Figure 4. Lower tropospheric stability (LTS) distribution in (a) ERA5 and (b) MERRA-2
calculated for the 31 voyage tracks and one station from the highest instantaneous temporal reso-
lution data available. Shown is also the chosen dividing threshold of 12 K for conditions of weak

and strong stability.
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relative to the WindSat polarimetric microwave radiometer measurements (Meissner &
Wentz, 2009). For identifying cyclones in ICON, its own pressure and wind fields were
used as the input to CyTRACK because ICON is free-running, and thus the pressure
and wind fields are different from reality. Subsetting by proximity to cyclones is a rel-
atively crude measure because it does not take into account the different sectors of cy-
clones, which are commonly associated with different weather situations. However, this
was a choice made for simplicity of the analysis, given the quantity of data. Konstali et
al. (2024) performed a more complex attribution of precipitation to individual cyclone
features.

In addition to the above, we partitioned our data into two mutually exclusive sub-
sets based on LTS, which is derived as the difference between the potential temperature
at 700 hPa and the surface. Based on a histogram of LTS in ERA5 and MERRA-2 cal-
culated at all voyage tracks and stations (Fig. 4), we determined a statistically based di-
viding threshold of 12 K for weak stability (< 12 K) and strong stability (> 12 K) con-
ditions.

3 Results
3.1 Cyclonic Activity and Stability

Fig. ba and b show the geographical distribution of the fraction of cyclonic days
as determined by the cyclone tracking algorithm applied to the ERA5 reanalysis and ICON
data (Section 2.10). As expected, the strongest cyclonic activity is in the high-latitude
SO zone and is relatively zonally symmetric at all latitudes. The pattern matches rea-
sonably well with Hoskins and Hodges (2005). While both reanalysis and ICON agree
within about 8% in most areas, ICON is prevailingly more cyclonic by about 4%. There
are clear differences, particularly in the highest occurrence rate regions, such as around
Cape Adare, which is up to 20% more cyclonic in ICON, and the Weddell and Belling-
shausen Seas, where ICON is less cyclonic by up to 10%. These differences might, how-
ever, stem from the relatively short time periods of comparison (4 years) and the fact
that ICON is free-running.

Fig. 5c, d show the geographical distribution of the conditions of weak and strong
stability as determined by the LTS (Section 2.10). Conditions of weak stability are preva-
lent in the mid-to-high SO (50-65°S), which might be explained by the relatively cold
near-surface air overlying the relatively warm sea surface. Conditions of strong stabil-
ity are common elsewhere over the SO. The distribution is also less zonally symmetric
than the cyclonic activity. In the high-latitude SO, the presence of sea ice might have
a substantial stabilizing effect (Knight et al., 2024). ICON is also substantially less sta-
ble than ERA5 across the whole region. In Section 3.5 we show that based on radiosonde
observations, the bias is in ICON and not ERAS5, and it is the result of underestimated
temperature at heights corresponding to 700 hPa, as well as overestimated near-surface
(2 m) air temperature, characterized by a higher frequency of occurrence in the 1-7°C
range compared to observations at radiosonde launch locations (Fig. 6a). This may be
related to large-scale circulation in ICON or radiative transfer biases.

3.2 Cloud Occurrence by Height

We used the ALCF to derive cloud occurrence by height and the total cloud frac-
tion from observations, ICON, ERA5, and MERRA-2. The results for all campaigns in-
dividually are shown in Fig. S1. As shown in this figure, the biases are relatively con-
sistent across the campaigns and longitudes. In addition, we aggregated the campaigns
by calculating the averages and percentiles of all individual profiles, presented in Fig. 7.
The analysis shows that the total cloud fraction is underestimated in ICON by about
10% and in the reanalyses by about 20%. When analyzed by height, ICON overestimates
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cloud occurrence below 1 km and underestimates it above; MERRA-2 underestimates
cloud occurrence at all heights by up to 10%, especially near the surface; and ERA5 sim-
ulates cloud occurrence relatively well above 1 km but strongly underestimates it near
the surface. We note that fog or very low-level clouds are strongly underestimated in the
reanalyses (fog and clouds are both included in the cloud occurrence). We conclude that
the ICON results match the observations better than the reanalyses in this metric.

For all observations considered (Fig. 7a), the data show cloud occurrence peaking
near the surface, whereas the model and reanalyses show a higher peak (at about 500 m).
The model and reanalyses generally underestimate the total cloud fraction by 10-30%
and show a strong drop in cloud occurrence near the surface, which is not identified in
the observations. ICON and ERA5 overestimate cloud occurrence at their peak (between
0 and 1 km). Above 1 km, ICON and MERRA-2 underestimate cloud occurrence, but
ERAS is accurate to about 3% or less. The exaggerated peak in the model and reanal-
yses is partly explained by the LCL distribution, which peaks about 300 m higher in the
model and reanalyses than in the observations (near the surface), although this is not
very pronounced. This is indicative of near-surface RH often being close to saturation
in the observations but not in the model and reanalyses (Fig. 6b). There are multiple
possible reasons for this bias, such as how the statistical distribution of RH within a grid
cell is represented in the model and reanalyses, the air—sea moisture flux parameteriza-
tion, or weaker stability in the model and reanalyses, which can cause more boundary
mixing across heights and thus lower near-surface RH.

When the data are subset by latitude (Fig. 7b, c¢), we see that the low-latitude SO
zone (40-55°S) displays a stronger peak of cloud occurrence near the surface than the
high-latitude SO zone (between 55°S and the Antarctic coast), and this could be because
higher latitudes have a greater prevalence of weakly stable profiles (Fig. 5¢, d), although
more stable profiles populate regions south of 65°S close to the Antarctic coast. Cyclonic
activity is also stronger in high-latitude SO, which is typically associated with shallow
or deep convection rather than the very stable stratification necessary for fog formation.
The low- and high-latitude SO zones show similar biases in the model and reanalyses as
in the general case, but ERA5 does not overestimate the peak in the low-latitude SO zone
(very low-level cloud occurrence is still strongly underestimated).

When the data are subset as either cyclonic or non-cyclonic situations (Fig. 7d, e),
we see that the cyclonic situations have a larger amount of observed cloudiness, includ-
ing peak and total cloud fraction, by about 10%. In the cyclonic situations, the model
and reanalysis vertical profiles of cloud occurrence compare well with observations, but
they peak higher by about 200 m and are larger by about 8%. The reanalyses tend to
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underestimate cloud occurrence above 1 km by about 5% and near the surface by about
15%. Non-cyclonic situations are similar to the general case, also because they form the
majority of analyzed profiles (83%).

When the data are subset by stability (Fig. 7f, g), as defined in Section 2.10, we
see that in situations of strong stability, cloud occurrence peaks strongly near the sur-
face in observations, compared to situations of weak stability, where the peak is more
diffuse between 0 and 1 km. Physically, conditions of strong stability are associated with
the formation of advection fog, such as in situations of warm air advection from the north
over a colder sea surface, thus inducing fog formation by cooling of the warm and hu-
mid air by the cold surface. In situations of strong stability, the model and reanalyses
have smaller biases than in weak stability, with an overestimated peak of up to 12%, un-
derestimated cloud occurrence above 1 km by up to 5%, and underestimated cloud oc-
currence near the surface by about 10% in the reanalyses but not ICON. In situations
of weak stability, the bias in ICON is very pronounced, with a much larger peak in cloud
occurrence at about 500 m; the reanalyses underestimate cloud occurrence below 1 km,
especially near the surface; and MERRA-2 underestimates cloud occurrence more strongly
at almost all heights.

In all subsets, even when the model and reanalyses overestimate cloud occurrence
at some altitudes, they always substantially underestimate the total cloud fraction. ICON
can be generally characterized as substantially overestimating cloud occurrence below
1 km and underestimating above, underestimating the total cloud fraction, and show-
ing the greatest biases in conditions of weak stability and non-cyclonic conditions. ICON
also has a peak cloud occurrence at higher altitudes than observations (500 m vs. near
the surface), and correspondingly, its LCL tends to be higher. MERRA-2 can be gen-
erally characterized as underestimating cloud occurrence at nearly all altitudes as well
as the total cloud fraction, but mostly above and below 500 m (the peak at 500 m is well
represented). MERRA-2 displays the largest errors relative to observations in the low-
latitude SO zone and under weak stability. ERA5 can be generally characterized as rep-
resenting cloud occurrence correctly above about 1.5 km, overestimating between 500 m
and 1 km, but underestimating very low-level cloud occurrence. The total cloud frac-
tion is strongly underestimated in all subsets. ERAB has a tendency towards greater cloud
underestimation in the low-latitude SO zone and under weak stability; conversely, it over-
estimates the peak of cloud occurrence at 500 m in the high-latitude SO zone and un-
der strong stability.

3.3 Daily Cloud Cover

We also analyzed the daily cloud cover (total cloud fraction) distribution. This is
a measure of cloudiness, irrespective of height, calculated over the course of a day (UTC).
A cloud detected at any height means that the lidar profile was classified as cloudy; oth-
erwise, it was classified as a clear sky. When all profiles in a day are taken together, the
cloud cover for the day is defined as the fraction of cloudy profiles in the total number
of profiles. It is expressed in oktas (multiples of 1/8), reflecting the 3-hourly output of
MERRA-2 and ICON;, i.e., 8 times per day. The same calculation is done for the lidar
observations as for the simulated lidar profiles. We use the term “okta” independently
of its use in instantaneous synoptic observations, and here it simply means 1/8 (0.125)
of the daily cloud cover.

In Fig. 8 we show the results for the same subsets of data as in Section 3.2. Ob-
servations display the highest proportion of high cloud cover values (5-8 oktas), peak-
ing at 7 oktas. This pattern is not represented by ICON or either reanalysis. While ICON
is closest to matching the observed distribution, it tends to be 1 okta clearer than the
observations, peaking at 6 oktas, and substantially underestimating days with 8 oktas.
Overall, the reanalyses show results similar to each other, underestimating cloud cover
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Figure 7.

Cloud occurrence by height calculated as the average of all voyages and stations

and lifting condensation level (LCL) distribution. The LCL is derived from radiosonde profiles

and equivalent model and reanalysis profiles, which were not available for all voyages and times.

The total cloud fraction (CF), average outgoing shortwave (SW) and longwave (LW) radiation,

and the relative frequency of occurrence (RFO) are shown. The bands are the 16th—84*" per-

centile, calculated from the set of all voyages and stations.
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by about 2 oktas and strongly underestimating days with 7 and 8 oktas. Of the two re-
analyses, MERRA-2 has slightly higher cloud cover than ERA5, by about 6% at 6 oc-
tas, which makes it more consistent with observations.

When analyzed by subsets, observations in the cyclonic subset show the highest
cloud cover, with 8 oktas occurring on one half of such days (Fig. 8d). This sensitivity
to cyclonic conditions is not observed in ICON or the reanalyses. Interestingly, clear sky
days (0 oktas) also have a local maximum peaking at about 15% in this subset. When
we contrast the low- and high-latitude zones, we see that the high-latitude zone tends
to have greater cloud cover, peaking at 8 oktas (Fig. 8c). The high-latitude zone also has
almost no clear sky or small cloud cover cases (0-4 oktas). ICON and the reanalyses rep-
resent this characteristic of the distribution well for 0-3 oktas, but otherwise show bi-
ases similar to the general case. One of the greatest biases is present in ERAS5 in the sub-
set of weak stability, in which ERA5 peaks at 3 oktas, while the observations peak at
7 oktas and show negligible cloud cover below 5 oktas.

3.4 Top of Atmosphere Radiation, Liquid and Ice Water Path

In Fig. 7, we also show the mean outgoing SW and LW TOA radiation, whose cal-
culation is described in Section 2.8. In observations, these come from daily mean CERES
measurements averaged over the voyage tracks or a station location, whereas in the model
and reanalyses they come from daily means of TOA radiation in the output averaged
over the same location and time periods.

In the general case (Fig. 7a), ICON and ERA5 underestimate the outgoing SW ra-
diation by 22 and 20 Wm~2 (respectively), and MERRA-2 overestimates it by 6 Wm™2.
While in ICON and ERAS5, this is in line with the underestimated total cloud fraction
of 10% and 22% (respectively); in MERRA-2, the opposite result is expected from the
underestimated total cloud fraction of about 20%. Neglecting the direct radiative effects
of sea and aerosol, this is only possible if the albedo of cloudy areas is overestimated, com-
pensating for the lack of cloudy areas.

We note that the radiative transfer calculations used in the lidar simulator mean
that the impact of both cloud phase and cloud fraction are convolved to produce the cloud
mask. Therefore, the cloud occurrence is not affected by any cloud phase biases as long
as the cloud is optically thick enough to be detected and the laser signal is not too at-
tenuated. A combination of underestimated total cloud fraction and overestimated out-
going SW at TOA is indicative of an overestimated cloud albedo (in cloudy areas) due
to either cloud liquid and ice water content, cloud phase, droplet or ice crystal size dis-
tribution, shape or orientation of ice crystals, cloud overlap, or their combination. The
influence of cold clouds is likely second-order due to the much larger typical effective ra-
dius of ice crystals than cloud droplets.

In contrast to SW radiation, the model and reanalyses have much smaller LW ra-
diation biases, which is expected due to the prevailing low-level clouds having similar tem-
peratures as the surface. Roh et al. (2021) also found LW biases to be much lower than
SW biases in DYAMOND models over the tropical Atlantic Ocean. In ICON, the out-
going LW radiation is overestimated by 5% (Fig. 7a). This is likely caused by an under-
estimated total cloud fraction exposing a larger sea surface area to cooling to space, which
is typically warmer than the atmospheric temperature at 0-2 km, where most of the clouds
are located. In the MERRA-2 and ERAJ5 reanalyses, the LW biases are also slightly pos-
itive, 4 and 5 Wm™2, respectively. This is again in line with the underestimated total
cloud fraction by about 20%. However, if the clouds are too thick, as expected from the
SW results, this might also provide a compensating effect, in which too small a cloud
area is counteracted by greater optical thickness in the LW spectrum, thus reducing the
outgoing LW radiation more in thick relative to thinner clouds. For thin clouds, the out-
going TOA LW radiation originates both from the warmer surface (partly blocked by
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the clouds) and the clouds, whereas for thick clouds, the outgoing TOA LW radiation
originates mostly from the colder-than-surface clouds.

In all the subsets (Fig. 7b—g), the same type of biases are observed, namely the out-
going SW radiation is underestimated in ICON and ERA5 and overestimated in MERRA-
2, and the outgoing LW radiation is overestimated in the model and reanalyses. Even
though the total cloud fraction is higher by 6% over the high-latitude SO than the low-
latitude SO, the outgoing SW radiation is much greater by 41 Wm™2, implying a much
greater cloud albedo (of cloudy areas) over the high-latitude SO. ICON has little differ-
ence in the total cloud fraction between low- and high-latitude SO, but greater outgo-
ing SW radiation by 14 Wm~2 over the high-latitude SO, likely due to thicker clouds
under deeper convection in less stable and more cyclonic conditions relative to the low-
latitude SO. In contrast, the reanalyses showed both greater total cloud fraction and out-
going SW radiation over the high-latitude SO compared to the low-latitude SO.

Fig. 9a, b shows the SW and LW radiation as histograms and their corresponding
averages. ERA5 and ICON overestimate the frequency of outgoing SW near 80 Wm ™2
(Fig. 9a), which probably relates to clear sky situations, as expected from the underes-
timated cloud fraction. They also underestimate the frequency of highly reflective sit-
uations above 200 Wm~2. MERRA-2 exhibits the too-few-too-bright problem in terms
of overestimating the frequency of SW reflectivity around 290 Wm~2, given that the to-
tal cloud fraction in MERRA-2 is strongly underestimated. The LW distribution shows
that the model and reanalyses overestimate outgoing LW (Fig. 9b), which is expected
from the underestimated cloud fraction, exposing more of the warmer ocean surface rel-
ative to colder clouds.

Fig. 9c—f shows the LWP and IWP distributions as histograms and their correspond-
ing averages. The LWP and IWP are calculated from the mass of water in the column
divided by the area of the column, i.e., not just the area of the cloudy portion of the col-
umn, as in some definitions. The available observational satellite reference for the LWP
and IWP over high latitudes is unfortunately very uncertain due to a high solar zenith
angle and the inability of passive visible and infrared retrievals to detect phase below
the cloud top of mixed-phase clouds (Huang et al., 2006; Greenwald, 2009; Seethala &
Horvath, 2010; Eliasson et al., 2011; Duncan & Eriksson, 2018; Khanal et al., 2020), and
this limits our comparison. The LWP distribution shows that the model and reanaly-
ses overestimate cases with a near-zero LWP (Fig. 9¢), which relates to the underesti-
mated total cloud fraction. MERRA-2 shows quite overestimated high-LWP situations,
which is most likely related to the too-few-too-bright problem of simulating lower total
cloud fraction but clouds with a higher LWP to compensate. The IWP (Fig. 9d) is some-
what less important radiatively than LWP because of the typically larger and less nu-
merous hydrometeors. Similarly to the LWP, the model and reanalyses overestimate sit-
uations with a near-zero IWP. ERAS5 is otherwise simulating the IWP distribution well,
but ICON and MERRA-2 underestimate the IWP. In the cloudy situations (Fig. e, f),
it can be seen more distinctly that MERRA-2 overestimates moderate (0.05-0.15 kg m~2)
and high LWP (over 0.15 kg m~2), and ERA5 and ICON underestimate moderate LWP.
ICON also overestimates high LWP, resulting in overestimated average LWP.

3.5 Relative humidity and potential temperature profiles

In order to examine the potential link in the cloud biases to the local physical con-
ditions, we analyzed the radiosonde profiles available from the campaigns (Section 2.1).
The profiles were partitioned into the same subsets as above (Sections 3.2 and 3.3). We
focus on comparing 6, and RH, being one of the primary factors affecting shallow con-
vection and the associated low-level cloud formation and dissipation. The observed, model,
and reanalysis profiles of 6, and RH are shown in Fig. 10.
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Figure 9. Histograms and averages of outgoing (a) SW, (b) LW radiation at TOA, (c, e)
liquid water path, and (d, f) ice water path in CERES SYN1ldeg observations (OBS), ICON,
MERRA-2, and ERA5. The results are shown for (a—d) all and (e, f) cloudy profiles. All cam-
paigns are weighted equally. The statistics are calculated from daily mean values corresponding

to each time step and geographical location of the voyage tracks and stations.

Overall, the mean 6, is accurate to within 0.5 K in ICON and MERRA-2, except
for ICON being colder by up to 2.5 K in the mid-to-high troposphere (less stable) (Fig. 10a).
Larger differences exist, however, in the 40-55°S zone, where ICON is colder by about
5 K at 5 km (Fig. 10b). In other subsets, the bias is relatively small. MERRA-2 and ERA5
are very close to the observations, possibly due to a high accuracy of assimilation of this
quantity. Notably, the variability of 0, (as represented by the percentiles) is much smaller
in ICON than in the observations. This indicates that this model’s internal variability
in the lower-tropospheric thermodynamic conditions in the SO is smaller than in real-
ity.
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Figure 11.

Relative humidity histograms calculated from the observed radiosonde profiles

and the equivalent model and reanalysis profiles for (a—d) all bins, (e—h) clear bins, and (i-1)

cloudy bins, determined from the lidar cloud mask. Model and reanalysis histogram values are

relative to observations. The histogram values are normalized to 100% for each level separately.

All campaigns are weighted equally.

RH displays much larger biases. In all subsets, ICON is too humid in the first 1 km
by about 5%, but very accurate above, except for the 40-55°S zone and conditions of weak
stability (Fig. 10b, g), where it is too dry between about 1 and 3 km. Even though RH
measured by radiosondes in the first 100 m is not very different between the observations
and the model and reanalyses (Fig. 10a), near-surface (2-m) RH at the radiosonde launch
locations is much greater in the observations, most often close to 100%, unlike in the model
and reanalyses, where 85% tends to be the most common (Fig. 6b). This also explains
why LCL is much more frequently located at the surface in the observations than in the
model and reanalyses (Fig. 7a). LCL is fully determined by near-surface temperature,
near-surface RH, and surface pressure.
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Fig. S2 shows 6, and RH profiles for profiles containing fog, cloud at 500 m, and
cloud at 1.5 km. These situations are characterized by particular cloud biases as iden-
tified in the lidar cloud occurrence analysis. The rationale is to examine 6#,, and RH as-
sociated with these situations. Foggy situations are characterized by a rapid increase of
6, with height and an observed average RH of about 90% near the surface (Fig. S2a).

In contrast, the model and reanalyses predict higher RH in the first 100 m under foggy
conditions by several percentage points. In situations with clouds occurring at 500 m,

0, is relatively constant between the surface and 500 m (Fig. S2b), as expected for con-
vectively driven clouds. The observed RH peaks at 500 m at about 90%. The model and
reanalyses, however, predicted higher RH between the surface and 500 m under these
conditions, despite underestimated fog and low clouds (we discuss the reasons for this
later in this section). ICON and ERA5 show a stronger decrease of RH above this height
than observations, and ERA5 shows more strongly stable stratification. Unlike the foggy
and 500-m cloud situations, situations with clouds at 1.5 km do not have a flat 6, with
height. This indicates that, unlike the former, clouds at 1.5 km are not (or not as strongly)
convectively driven. As expected, RH in these situations peaks at 1.5 km at about 85%
in observations. In the model and reanalyses, this peak is much less pronounced.

Fig. 6¢ shows the histogram of LTS calculated from all radiosonde profiles and the
corresponding profiles in the model and reanalyses. It can be seen that ICON substan-
tially underestimates the occurrence of cases of strong stability above 16 K while over-
estimating the cases of moderate stability (8 to 16 K). When considered together with
the cloud occurrence results presented in Fig. 7, we see that since ICON is biased towards
weak stability, it overrepresents cloud profiles strongly peaking at 500 m (Fig. 7g) over
cloud profiles with fog or very low-level cloud (Fig. 7f). This can be a physical reason
for its overall positive bias in cloud at 500 m (Fig. 7a) instead of the observed cloud oc-
currence profile peaking near the surface. The reanalyses simulate the LTS distribution
well except for a slight underestimation of LT'S.

Fig. 11 shows RH histograms calculated from the radiosonde observations and equiv-
alent profiles in the model and reanalyses (shown as anomalies relative to the observa-
tions), calculated for all, clear, and cloudy bins, based on the lidar observations and the
simulated lidar backscatter in the model and reanalyses. Here, we show only the first
2 km to concentrate on the identified cloud biases seen at these heights. We can see sev-
eral notable features. The model and reanalyses predict progressively fewer high-RH (>90%)
bins above the ground (Fig. 11b—d). This can be related to either ice nucleation happen-
ing in the model and reanalyses, which requires smaller RH for saturation, or the grid
cell size in the model and reanalyses, which requires lower grid cell average RH than 100%
for saturation to occur in a fraction of the grid cell. The model and reanalyses also tend
to simulate more clear bins than observations for RH between 80 and 100% between the
ground and about 1 km (Fig. 11f-h). In the observations, these values of RH are asso-
ciated with cloudy bins (Fig. 11i). Conversely, the model and reanalyses predominantly
associate only RH very close to 100% with cloudy bins at these heights (Fig. 11j-1). This
may be one of the main reasons for the identified cloud or fog biases near the ground.

A possible explanation is that cloud droplets are able to form or persist at RH between

90 and 100% at these heights over the SO. This could be due to abundant hygroscopic
nuclei such as sea salt (Zieger et al., 2017; Kong et al., 2018) or droplet generation from
sea spray in the common high swell and high wind speed conditions over the SO (Revell

et al., 2019; Hartery et al., 2020). Stratus fractus or other broken clouds could also lead
to less than 100% RH when averaged over the size of the vertical bins (up to 30 m in some
of the radiosonde profiles).

Fig. S3 shows histograms the same as the previous figure, but for ,. They show
a more complex picture, characterized by a central peak at about 0°C near the surface,
increasing to about 5°C at 2 km (Fig. S3a). For cloudy bins, the central peak is gener-
ally more constant with height and even shows a minimum in 6, at about 500 m (Fig. S3i).

27—



839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

This is indicative of convection being associated with clouds at these heights, which re-
sults in flat 6, profiles. In the reanalyses, in the first 200 m, values slightly above 0°C
are associated with more clear bins than in observations, and values slightly below 0°C
with fewer (Fig. S3g-h). Conversely, the opposite is true for cloudy bins (Fig. S3k-1).
Situations with 0°C near-surface air temperature might occur predominantly when an
open ocean surface keeps the near-surface air temperature close to 0°C under otherwise
colder air mass conditions, such as under cold advection. ICON displays a notable bias
above about 1 km, where the central peak is strongly underestimated (Fig. S3j). Instead,
these heights and values of 6, are more associated with clear bins (Fig. S3f). This might
be related to the strong underestimation of cloud occurrence at these heights.

4 Limitations of this Study

Let us consider the main limitations of the presented results. The spatial cover-
age of our dataset does not include most parts of the Indian Ocean and Pacific Ocean
sectors of the SO. Even though climatological features of the SO are typically relatively
uniform zonally, variations exist, such as those related to the Antarctic Peninsula and
the southern tip of South America. The voyages were mostly undertaken in the Austral
summer months and only rarely in the winter months, due to the poor accessibility of
this region during winter. Therefore, our results are likely representative of summer and,
to a lesser extent, spring and autumn conditions. Ship access to sea-ice-covered areas
of the SO is also limited. Cloud regimes and phases in the region are seasonally variable
(Danker et al., 2022).

The time period of ICON is relatively short, with only four full years of simulation
available. Moreover, the simulation is free-running and ocean-coupled, which means that
observations had to be temporally mapped to this time period (at the same time rela-
tive to the start of the year) for the comparison. For these reasons, one can expect the
results to be slightly different due to reasons unrelated to the model and reanalysis bi-
ases, such as different weather conditions, partially accounted for by the cyclone and sta-
bility subsetting, and the phase of climate oscillations, such as the ENSO in the obser-
vations and ICON. The interannual variability in cloud occurrence in ICON can be seen
in Fig. S1, where each year in ICON is represented by a separate line. As could be ex-
pected, the interannual variability tends to be substantially smaller than the biases and
thus is unlikely to have a strong impact on the main findings.

It would be possible to use short-term ICON simulations for almost one-to-one com-
parison to observations. However, here we focus on long-term biases, which are statis-
tically more robust. Our analysis is, therefore, complementary to shorter process-level
studies. The reanalyses pose the difficulty of determining how much assimilated obser-
vations impact the results. While one might expect temperature and RH profiles to be
well represented in the reanalyses due to assimilation of satellite data, we see that this
is not always the case in comparison with the radiosonde profiles and near-surface me-
teorological observations. This could be due to the limited vertical accuracy of satellite
sounding measurements and obscuration by clouds. Despite the assimilation, the cloud
and radiation biases are often comparable to or greater than in the free-running model.

Ground-based lidar observations are affected by attenuation by thick cloud layers,
and for this reason the results are most representative of boundary layer clouds, while
higher-level clouds are only occasionally visible to the lidar when boundary layer clouds
are not present. Ground-based lidar observations can be regarded as complementary to
satellite lidar observations for the evaluation of low-level clouds, which are predominant
in this region, while mid- and high-level clouds are likely better sampled by satellite ob-
servations (McErlich et al., 2021). Ground-based observations are, however, complicated
by precipitation, and satellite observations can also be used if the effect of overlapping
clouds is carefully eliminated. Lidar retrievals close to the surface (~100 m) are affected
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by uncertainties related to incomplete overlap, signal saturation (dead time), and after-
pulse effect corrections (Kuma et al., 2021).

Supercooled liquid clouds (liquid clouds under subzero temperature) commonly oc-
cur over the SO. In our analysis of the LWP and IWP, we see that both phases are abun-
dant. Because liquid water droplets are typically smaller and more numerous than ice
crystals in cold clouds, they attenuate a greater amount of the lidar radiation. Clouds
with a relatively modest optical thickness of 1.7 can attenuate the lidar signal for a de-
tection at 2 km using an instrument with noise properties like the Vaisala CL31 (Sec-
tion 2.4). While supercooled liquid clouds and their attenuation are accounted for by the
lidar simulator, they can strongly attenuate the signal and cause artificially low values
of cloud occurrence at higher altitudes. For example, we found that cloud occurrence at
1.5 km is underestimated in ICON and underlying clouds are overestimated. However,
this can also mean that clouds at 1.5 km are present in the model, but the signal is too
attenuated by the lower clouds in the model, but not in the observations, where the un-
derlying clouds are not as pronounced.

We have attempted to remove lidar profiles with precipitation (about 26% of all
profiles), which could not be properly simulated with the lidar simulator (Section 2.9).
However, the approach was limited by the relatively low sensitivity of the ANN (65%)
and the fact that we had to choose a fixed threshold for surface precipitation flux in the
model and reanalyses, which might not correspond to detection by the ANN applied to
observations. We also made no attempt to remove profiles with precipitation that did
not reach the surface. The above reasons may result in an artificial bias in the compar-
ison, though we expect this to be much smaller than the identified model and reanal-
ysis biases.

Subsetting by cyclonic activity and stability is done based on the ERA5 data. As
we have shown, the reanalyses also suffer from biases in near-surface and upper-level quan-
tities. Therefore, the subsetting is limited by the accuracy of the ERA5 pressure field,
near-surface temperature, and temperature at 700 hPa. Near-surface ship observations
are affected by the ship structures as well as the variable height above sea level at which
the measurements are taken. The accuracy of radiosonde measurements in the first tens
of meters from the surface is also likely affected by the ship environment, such as tur-
bulence generated by ship structures and the ship exhaust. Vertical averaging of the ra-
diosonde data can result in lower RH near saturation due to averaging of drier and moister
layers together. For example, some of the RV Polarstern radiosondes are available in ver-
tical resolution of about 20-30 m. As mentioned in Section 3.4, the satellite retrieval of
the LWP and ITWP is affected by large biases, especially over high latitudes, which lim-
its our comparison with the model and reanalyses.

5 Discussion and Conclusions

We analyzed a total of about 2400 days of lidar and 2300 radiosonde observations
from 31 campaigns and the Macquarie Island sub-Antarctic station, covering the Atlantic,
Australian, and New Zealand sectors of the SO over 10 years. This dataset, together with
the use of a ground-based lidar simulator, provided a comprehensive basis for evaluat-
ing SO cloud and thermodynamic profile biases in the GSRM ICON and the ERA5 and
MERRA-2 reanalyses. Our analysis provides a unique evaluation perspective, comple-
mentary to satellite observations for evaluating boundary layer clouds and fog, which are
predominant in this region. We did not, however, analyze the cloud phase based on ground-
based observations. Cloud phase can have a strong impact on the SW radiative trans-
fer due to larger and therefore less numerous hydrometeors in cold and mixed-phase clouds
(for the same amount of water), scattering much less SW radiation. Especially, the un-
derestimation of fog or very low-level clouds is very substantial in the reanalyses, and
we showed that this relates to cloud and fog formation or persistence at RH between 80
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Table 3. Summary of the main biases. Values are relative to observations and rounded to the
nearest multiple of 5, except for daily cloud cover and RH, which are rounded to the nearest
integer. The best-performing value is marked in bold. Abbreviations: boundary layer (BL), rel-
ative humidity (RH), shortwave (SW), longwave (LW), liquid water path (LWP), ice water path
(IWP), and lifting condensation level (LCL).

ICON MERRA-2 ERA5

Total cloud fraction (%) -10 -20 -20
Daily cloud cover (okta) -1 -2 -2
Fog (%) 0 10 10
BL clouds (at ~500 m) 15 0 5
Mid-lev. clouds (at ~1.5 km) -5 -5 0
RH at 500 m 2 2 0
SW (W m~2) 925 5 20
LW (W m2 5 5 5
LWP (g m—2?) 10 20 -15
IWP (g m—2) 30 -30 -15
LCL distribution peak (m) 300 300 300

and 100% in the boundary layer in the observations, while in the model and reanalyses
RH values less than 100% are associated with clear bins. We subset the dataset by low
and high latitude SO bands, cyclonic activity, and stability in order to identify how these
conditions influence the biases. The main identified biases are summarized in Table 3
and discussed below.

Our main finding corroborates previous findings of large boundary layer cloud bi-
ases in the model and reanalyses and their subsequent effect on the radiative transfer.
For example, low- and mid-level clouds in the cold-air sector of cyclones were identified
as being responsible for most of the SW bias by Bodas-Salcedo et al. (2012). Precipi-
tation in intense extratropical oceanic cyclones is projected to increase with future warm-
ing (Kodama et al., 2019). The understanding of radiation biases was refined by Bodas-
Salcedo et al. (2014), who highlighted that the SW bias was associated with an incor-
rectly simulated mid-level cloud regime, which occurred in regions where clouds with tops
at mid-level and low levels occurred. Ramadoss et al. (2024) have shown that in precip-
itating conditions, km-scale ICON has SW radiative biases associated with the overrep-
resentation of the liquid phase at the cloud top in low stratocumulus clouds in a short
(48-h) simulation over the SO. Fiddes et al. (2024) suggested that biases in the LWP are
the largest contributor to the cloud radiative bias over the SO. Our general finding ap-
plies to the new GSRM ICON, but the biases are lower than in the reanalyses in sev-
eral aspects, namely the total cloud fraction, daily cloud cover, fog, and the LWP (Ta-
ble 3), despite the reanalyses having the advantage of assimilation of the observed me-
teorological conditions. ICON, on the other hand, performs worse than the reanalyses
in clouds and RH at 500 m, mid-level clouds (here defined as 1.5 km), outgoing SW ra-
diation, and the IWP. ICON has the advantage of a much higher spatial resolution and,
to a limited extent, explicit calculation of traditionally subgrid-scale processes such as
convection. These are incomplete due to the lack of sub-grid scale convection parame-
terization below the km scale. The lack of parameterized subgrid-scale convection in ICON
was a pragmatic choice in the model development, but it can be a source of substantial
cloud biases even at the 5-km resolution.

We show that relative to ERADB, the distribution and strength of cyclonic activity
over the SO is well represented in ICON, but it displays lower values of LTS. The lat-
ter is also manifested in the radiosonde profile comparison (Fig. 6¢), showing that the
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0, profiles in ICON are less stable than in the observations. It is also manifested in near-
surface air temperature, which is overestimated in the 1-7°C range at the radiosonde launch
locations (Fig. 6a). The underestimated LTS is linked to the overestimated cloud peak

at 500 m in the lidar cloud occurrence comparison (Fig 7f-g). It might also be interact-
ing with the cloud inhomogeneity factor employed in ICON (Section 2.5), resulting in
lower cloud liquid water used in radiative calculations, hence decreased outgoing SW ra-
diation. Based on the 6, profile analysis, clouds at 500 m are predominantly convectively
driven, and it is therefore expected that a bias towards weak stability results in an in-
creased cloud formation at this level. The underestimation of clouds above 1 km in ICON
does not have a clear physical reason in our analysis and is likely partially or fully caused
by stronger obscuration of the simulated lidar signal by the underlying and overestimated
clouds in ICON at around 500 m.

The campaigns show remarkably similar biases in cloud occurrence by height in the
lidar comparison (Fig. S1), which indicates that common underlying causes for the bi-
ases exist regardless of longitude and season. ICON underestimates the total cloud frac-
tion by about 10%, with an overestimation of clouds below 1 km and an underestima-
tion of clouds above 1 km. The reanalyses underestimate the total cloud fraction by about
20%. ERAS5 overestimates clouds below 1 km but underestimates very low-level clouds
and fog. ICON strongly overestimates the peak of cloud occurrence at about 500 m. This
can be explained by the radiosonde comparison, showing that it is too moist at around
this height (Fig. 10a); has underestimated LTS (Fig. 5 and 6¢), permitting shallow con-
vection to this height; and has underestimated near-surface RH (Fig. 6b), resulting in
higher LCL (Fig. 7). Similar to our results for mid-level clouds, Cesana et al. (2022) showed
that CMIP6 models also tend to underestimate cloud occurrence above 2 km over the
SO, although their analysis in this case was limited to liquid clouds.

The inability of the model and reanalyses to simulate fog can be linked to various
biases identified in our analysis. Near-surface RH is too low in the model and reanaly-
ses (Fig. 6b), potentially due to low moisture flux from the surface and too effective bound-
ary layer mixing. Near-surface temperature is also too high in ICON, and it can be ex-
pected that fog formation occurs in low near-surface temperature conditions when a warm
and moist air mass is cooled by the surface to the saturation point. Fig. S2 shows that
fog occurs under highly stratified conditions. The underestimated LTS in ICON (and
to a lesser extent in the reanalyses; Fig. 6¢) indicates that the model and reanalyses are
biased to weaker stability, thus having less favorable conditions for fog formation and
persistence. The RH distribution in cloudy bins (Fig. 11) also suggests that in observa-
tions, very low-level hydrometeors can occur under lower RH in observations than in the
model and reanalyses. This could be due to high availability of cloud condensation nu-
clei (CCN) or ice nucleating particles (INPs) or due to hydrometeors and aerosols formed
via sea spray under high swell and wind conditions. These parametrizations are likely
very uncertain in the model and reanalyses in the SO due to the sparsity of reference data.
Kawai et al. (2016) have shown that marine fog has some of the highest concentrations
globally over the SO, and SO marine fog has a greater occurrence in winter. They con-
clude that marine fog is related to large-scale circulation and warm advection, and this
is expected to change in a warming climate.

Compared to lidar observations, the daily cloud cover tends to be about 1 okta lower
in ICON and 2 oktas lower in the reanalyses. Conditions of weak stability are associated
with some of the greatest biases, especially in ERA5. The model and reanalyses also un-
derestimate the cloud cover very strongly in cyclonic conditions, which are very cloudy
in the observations (8 oktas) but much less so in the model and reanalyses. Similarly,
McErlich et al. (2023) found a 40% underestimation of cloud liquid water in cyclones over
the SO in ERAS5, despite total column water vapor being simulated much more accurately
(5% underestimation).
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The radiosonde observations indicate that the LCL is too high in ICON and reanal-
yses, which is probably responsible for the higher peak of clouds in the model and re-
analyses and the lack of very low-level clouds and fog. Notably, ICON exhibits smaller
internal variability in 6, than the radiosonde observations. The analysis of the LWP and
IWP (Fig. 9¢—f) shows that both phases are present in observations in about equal amounts.
The model and reanalyses show diverse biases, the most pronounced being overestima-
tion of high-LWP values in MERRA-2 and overestimation of cases with a near-zero LWP
and IWP in the model and reanalyses. The model and reanalyses tend to compensate
for the overestimated cases of a near-zero LWP with more high-LWP values to get a mean
LWP that is either less (but close) to the observations (ERA5) or higher than the ob-
servations (ICON and MERRA-2). The IWP is underestimated in the models and re-
analyses. In the case of [ICON and MERRA-2, the mean IWP was underestimated and
LWP overestimated, indicating that the model and reanalyses produce too much liquid
and not enough ice phase. This is in contrast with previous findings of the lack of su-
percooled liquid over the SO in other models. If the liquid phase is overestimated rel-
ative to the ice phase, one would expect underestimated cloud SW reflectivity due to a
larger number of smaller hydrometeors for the same amount of water. Cloudy areas would
then appear brighter in the SW spectrum. This can contribute to the too few, too bright
bias, i.e., the overestimated brightness of cloudy areas compensates for the lower total
cloud fraction. As mentioned in Section 3.4, the LWP and IWP are, however, affected
by the high uncertainty of the satellite retrievals.

The relationship between cloud biases and radiation has a number of notable fea-
tures. MERRA-2 exhibits the too-few-too-bright bias previously identified in models and
reanalyses. In our results, this is characterized by overestimated outgoing TOA SW ra-
diation, while at the same time total cloud fraction is underestimated based on the ground-
based lidar observations. On the other hand, this relationship is not present in ICON
or ERA5. ICON predicts smaller outgoing TOA SW radiation and smaller total cloud
fraction than observations, and the deficit of outgoing TOA SW radiation is approximately
proportional to the deficit of the total cloud fraction. While this might be a welcome fea-
ture and an improvement over previous models, it does mean that the outgoing TOA
SW radiation is overall underestimated instead of being compensated by a higher cloud
albedo. This can, of course, lead to undesirable secondary effects such as overestimated
solar heating of the sea surface, among other factors responsible for SO SST biases in
climate models (Q. Zhang et al., 2023; Luo et al., 2023; Hyder et al., 2018). In contrast
with our results, A. J. Schuddeboom and McDonald (2021) showed that CMIP6 mod-
els tend to overestimate a stratocumulus cloud regime over the SO.

Our results imply that SO cloud biases are a substantial issue even in the km-scale
resolution ICON and the reanalyses. More effort is therefore needed to improve the cloud
simulations in this understudied region. We see that while the ICON is superior to the
coarser reanalyses in some aspects (Table 3), it is affected by cloud biases large enough
to cause important radiative biases. Parts of the GSRM relevant to low clouds, however,
do not benefit from the higher resolution, such as cloud microphysics, unresolved clouds
smaller than the grid cell, and turbulence. Cloud biases have also been shown to be a
persistent issue in other GSRM models (Seiki et al., 2022).

We suggest the following avenues for future research. Evaluation of ocean—atmosphere
heat, moisture, and momentum fluxes with in-situ observations over the SO and com-
parison of GSRM simulations with large-eddy simulations in process-oriented studies;
evaluation of the DYAMOND project simulations in a similar manner as performed here
(for models that provide the necessary fields); and combining active satellite sensors such
as the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP)
on CALIPSO and Atmospheric Lidar [ATLID; Héliere et al. (2017)] on the Earth Clouds,
Aerosols and Radiation Explorer [EarthCARE; Illingworth et al. (2015)] satellite with
ground-based remote sensing could provide a more complete understanding of the cloud

—32—



1078 biases across the whole troposphere. Cloud phase could be analyzed in more detail us-
1079 ing the CALIPSO data, as was done by Roh et al. (2020) in a cloud-resolving model, or
1080 using ground-based observations with the dual-polarization Mini Micro Pulse Lidar [Min-
1081 iMPL; Spinhirne (1993); Campbell et al. (2002); Flynn et al. (2007)] data available from
1082 the TAN1802 voyage. Guyot et al. (2022) and Whitehead et al. (2024) have developed

1083 a machine learning method for identifying cloud phase from ceilometer data, and this
1084 could be used with our ground-based lidar dataset to analyze the cloud phase. However,
1085 their method would require a careful calibration with reference data coming from this
1086 region.
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