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Abstract31

Global storm resolving models (GSRMs) represent the next generation of global climate32

models. One of them is a 5-km Icosahedral Nonhydrostatic Weather and Climate Model33

(ICON). Its high resolution means that parameterizations of convection and clouds, in-34

cluding subgrid-scale clouds, are omitted, relying on explicit simulation but necessarily35

utilizing microphysics and turbulence parameterizations. Standard-resolution (10–100 km)36

models, which use convection and cloud parameterizations, have substantial cloud bi-37

ases over the Southern Ocean (SO), adversely affecting radiation and sea surface tem-38

perature. The SO is dominated by low clouds, which cannot be observed accurately from39

space due to overlapping clouds, attenuation, and ground clutter. We evaluated SO clouds40

in ICON and the ERA5 and MERRA-2 reanalyses using approximately 2400 days of li-41

dar observations and 2300 radiosonde profiles from 31 voyages and a Macquarie Island42

station during 2010–2021, compared to the model and reanalyses using a ground-based43

lidar simulator. We found that ICON and the reanalyses underestimate the total cloud44

fraction by about 10 and 20%, respectively. ICON and ERA5 overestimate the cloud oc-45

currence peak at about 500 m, associated with underestimated lower tropospheric sta-46

bility and overestimated lifting condensation level. The reanalyses strongly underesti-47

mate fog and very low-level clouds, and MERRA-2 underestimates cloud occurrence at48

almost all heights. Outgoing shortwave radiation is overestimated in MERRA-2, imply-49

ing a “too few, too bright” cloud problem. SO cloud and fog biases are a substantial is-50

sue in the analyzed model and reanalyses and result in shortwave and longwave radia-51

tion biases.52

Plain Language Summary53

Global storm-resolving models are climate models with km-scale resolution, which54

are currently in development. Reanalyses are the best estimates of past meteorological55

conditions based on an underlying global model and observations. We evaluated clouds,56

temperature, and humidity profiles over the Southern Ocean in one such model, ICON57

and two reanalyses, based on 2400 days of ship and station observations. Thanks to the58

high resolution, ICON relies on explicit simulation of clouds instead of subgrid-scale pa-59

rameterizations. For the evaluation, we used ceilometer and radiosonde observations and60

a lidar simulator, which enables a fair comparison with ICON and reanalyses. We sub-61

set our results by cyclonic activity and stability. We found that ICON and reanalyses62

underestimate lidar-derived cloud fraction, and the reanalyses do so more strongly. Fog63

and very low-level clouds are especially underestimated in the reanalyses. However, ICON64

and one of the reanalyses also tend to overestimate the peak of cloud occurrence at 50065

m above the ground, and it tends to be higher. This is linked to thermodynamic pro-66

files, which show a higher lifting condensation level and lower stability. Southern Ocean67

cloud and fog biases are an important problem in the analyzed model and reanalyses and68

result in radiation balance biases.69

1 Introduction70

Increasing climate model spatial resolution is one way of improving the accuracy71

of the representation of the climate system in models (Mauritsen et al., 2022). It has been72

practiced since the advent of climate modeling as more computational power, memory,73

and storage capacity become available. It is, however, often not as easy as changing the74

grid size because of the complex interplay between model dynamics and physics, which75

necessitates adjusting and tuning all components together. Increasing resolution is, of76

course, limited by the available computational power and a trade-off with increasing pa-77

rameterization complexity, which is another way of improving model accuracy. Current78

computational availability and acceleration from general-purpose computing on graph-79

ics processing units has progressed to enable km-scale (also called k-scale) Earth system80
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models (ESMs) and coupled atmosphere–ocean general circulation models for research81

today and will become operational in the future. Therefore, it represents a natural ad-82

vance in climate modeling. Global storm-resolving models (GSRMs) are emerging as a83

new front in the development of high-resolution global climate models, with horizontal84

grid resolutions of about 2–8 km (Satoh et al., 2019; Stevens et al., 2019). This resolu-85

tion is enough to resolve mesoscale convective storms, but smaller-scale convective plumes86

and cloud structure remain unresolved. At an approximately 5-km scale, non-hydrostatic87

processes also become important (Weisman et al., 1997), and for this reason such mod-88

els are generally non-hydrostatic. The terms global cloud-resolving models or global convection-89

permitting/-resolving models are also sometimes used interchangeably with GSRMs but90

imply that clouds or convection are resolved explicitly, which is not entirely true for GSRMs,91

as this would require an even higher horizontal resolution (Satoh et al., 2019). Repre-92

sentative of these efforts is the DYnamics of the Atmospheric general circulation Mod-93

eled On Non-hydrostatic Domains (DYAMOND) project (Stevens et al., 2019; DYAMOND94

author team, 2024), which is an intercomparison of nine global GSRMs over two 40-day95

time periods in summer (1 August–10 September 2016) and winter (20 January–1 March96

2020). A new one-year GSRM intercomparison is currently proposed by Takasuka et al.97

(2024), with the hope of also evaluating the seasonal cycle and large-scale circulation.98

An alternative to using a computationally costly GSRM is to train an artificial neural99

network on GSRM output and use it for subgrid-scale clouds, as done with the GSRM100

ICON by Grundner et al. (2022) and Grundner (2023).101

The main aim of this study is to evaluate the GSRM version of ICON developed102

by the nextGEMS project (nextGEMS authors team, 2024; Segura et al., 2025). ICON103

is developed and maintained jointly by Deutscher Wetterdienst, the Max-Planck-Institute104

for Meteorology, Deutsches Klimarechenzentrum (DKRZ), Karlsruhe Institute of Tech-105

nology, and the Center for Climate Systems Modeling. Our aim is to quantify how well106

the GSRM ICON simulates clouds over the Southern Ocean (SO), particularly in light107

of the fact that subgrid-scale clouds and convection are not parameterized in this model.108

This region is mostly dominated by boundary layer clouds generated by shallow convec-109

tion, and these are problematic to observe by spaceborne lidars and radars, which are110

affected by attenuation by overlapping and thick clouds (Mace et al., 2009; Medeiros et111

al., 2010) and ground clutter (Marchand et al., 2008), respectively. Specifically, the radar112

on CloudSat and lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-113

servation (CALIPSO), neither of which are operational any more, are affected by the above-114

mentioned issues, resulting in a strong underestimation of cloud occurrence below 2 km115

in a merged CloudSat–CALIPSO product relative to ground-based lidar observations at116

McMurdo Station (McErlich et al., 2021). Removing situations with higher overlapping117

clouds could enable a less biased comparison of low clouds. We hypothesize that this,118

in turn, can lead to systematic biases in low clouds in climate models and reanalyses,119

which are frequently evaluated against CloudSat–CALIPSO products. Reanalyses can120

also suffer from cloud biases, as these are usually parameterized in their atmospheric com-121

ponent and also in regions where input observations are sparse. This makes them a prob-122

lematic reference for clouds over the SO, and any biases relative to a reanalysis should123

be interpreted with caution. Instead, we chose to use a large set of ship-based observa-124

tions conducted with ceilometers and lidars on board the research vessel (RV) Polarstern125

and other ships and a station as a reference for the model and reanalysis evaluation. Al-126

together, we analyzed approximately 2400 days of data from 31 voyages and a sub-Antarctic127

station covering diverse longitudes and latitudes of the SO. To achieve a like-for-like com-128

parison with the model, we used a ground-based lidar simulator called the Automatic129

Lidar and Ceilometer Framework [ALCF; Kuma et al. (2021)]. We contrasted the results130

with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanaly-131

sis 5 [ERA5; ECMWF (2019)] and the Modern-Era Retrospective analysis for Research132

and Applications, Version 2 [MERRA-2; Gelaro et al. (2017)].133
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The nextGEMS project focuses on the research and development of GSRMs at mul-134

tiple modeling centers and universities in Europe. The project also develops GSRM ver-135

sions of the Icosahedral Nonhydrostatic Weather and Climate Model (ICON; Hohenegger136

et al. (2023)), the Integrated Forecasting System [IFS; ECMWF (2023)], and their ocean137

components at eddy-resolving resolutions: ICON-O (Korn et al., 2022) coupled with ICON138

and Finite-Element/volumE Sea ice-Ocean Model [FESOM; Q. Wang et al. (2014)] and139

Nucleus for European modeling of the Ocean [NEMO; Madec and the NEMO System140

Team (2023)] coupled with IFS. The project has so far produced ICON and IFS simu-141

lations with three development versions called Cycle 1–3 and a pre-final version, with142

a final production version planned by the end of the project. nextGEMS is not the only143

project developing GSRMs; other GSRMs (or GSRM versions of climate models) cur-144

rently in development include: Convection-Permitting Simulations With the E3SM Global145

Atmosphere Model [SCREAM; Caldwell et al. (2021)], Non-hydrostatic Icosahedral At-146

mospheric Model [NICAM; Satoh et al. (2008)], Unified Model (UM), eXperimental Sys-147

tem for High-resolution modeling for Earth-to-Local Domain [X-SHiELD; SHiELD au-148

thors team (2024)], Action de Recherche Petite Echelle Grande Echelle-NonHydrostatic149

version [ARPEGE-NH; Bubnová et al. (1995); Voldoire et al. (2017)], Finite-Volume Dy-150

namical Core on the Cubed Sphere [FV3, Lin (2004)], the National Aeronautics and Space151

Administration (NASA) Goddard Earth Observing System global atmospheric model152

version 5 [GEOS5; Putman and Suarez (2011)], Model for Prediction Across Scales [MPAS;153

Skamarock et al. (2012)], and System for Atmospheric Modeling [SAM; Khairoutdinov154

and Randall (2003)].155

Multiple cloud properties have an effect on shortwave (SW) and longwave (LW)156

radiation. To first order, the total cloud fraction, cloud phase, and the liquid and ice wa-157

ter path (LWP and IWP) are the most important cloud properties influencing SW and158

LW radiation. These properties are in turn influenced by the atmospheric thermodynam-159

ics, convection and circulation, and both the indirect and direct effects of aerosols. Second-160

order effects on SW and LW radiation are associated with the cloud droplet size distri-161

bution, ice crystal habit, cloud lifetime, and direct radiative interaction with aerosols (Boucher162

et al., 2013). In the 6th phase of the Coupled Model Intercomparison Project [CMIP6;163

Eyring et al. (2016)], the cloud feedback has increased relative to CMIP5 (Zelinka et al.,164

2020), especially in the Southern Hemisphere mid-to-high latitudes, which is one of the165

main reasons for the higher climate sensitivity of CMIP6 models.166

The SO is known to be a problematic region for climate model biases (A. J. Schud-167

deboom & McDonald, 2021; Hyder et al., 2018; Cesana et al., 2022; Zhao et al., 2022)168

due to a lack of surface and in situ observations. This region has also long been a lower169

priority region for numerical weather prediction (NWP) and climate model development170

because of its distance from populated areas. Nevertheless, radiation biases and changes171

over an area of its size have a substantial influence on the global climate (Rintoul, 2011;172

Bodas-Salcedo et al., 2012), such as affecting the Earth’s radiation balance, ocean heat,173

and carbon uptake (R. G. Williams et al., 2023), and the SO is also an important part174

of the global ocean conveyor belt (C. Wang et al., 2014). In general, marine clouds have175

a disproportionate effect on top-of-atmosphere (TOA) SW radiation due to the relatively176

low albedo of the sea surface. The relative longitudinal symmetry of the SO means that177

model cloud biases tend to be similar across longitudes.178

In the following text, we refer to the SO as ocean regions south of 40°S, low-latitude179

SO as 40–55°S, and high-latitude SO as south of 55°S, all the way to the Antarctic coast.180

The reason for this dividing latitude is to split the SO into about two equal zones, as well181

as the results by A. J. Schuddeboom and McDonald (2021) (Fig. 2b) which show a con-182

trast in CMIP model radiation biases. A. Schuddeboom et al. (2019) (Fig. 2) and Kuma183

et al. (2020) (Fig. 3) also show contrasting radiation biases in the Hadley Centre Global184

Environmental Model, which is also supported by Cesana et al. (2022), displaying con-185

trasting cloud biases due to the 0°C isotherm reaching the surface at 55°S. The findings186
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of Niu et al. (2024), however, support a different dividing line of 62°S based on cloud con-187

densation nuclei concentration.188

SO radiation biases have been relatively large and systematic compared to the rest189

of the globe since at least CMIP3 (Trenberth & Fasullo, 2010; Bodas-Salcedo et al., 2012),190

and the SO SW cloud radiative effect bias is still positive in eight CMIP6 models an-191

alyzed by A. J. Schuddeboom and McDonald (2021) over the high-latitude SO, whereas192

over the low-latitude SO it tends to be more neutral or negative in some models. Too193

much absorbed SW radiation over the SO was also identified in the GSRM SCREAM194

(Caldwell et al., 2021). Compensating biases are possible, such as the “too few too bright”195

cloud bias, characterized by too small a cloud fraction and too large a cloud albedo (Wall196

et al., 2017; Kuma et al., 2020), previously described by Webb et al. (2001), Weare (2004),197

M. H. Zhang et al. (2005), Karlsson et al. (2008), Nam et al. (2012), Klein et al. (2013),198

and Bender et al. (2017) in other regions and models, which means that a model can main-199

tain a reasonable SW radiation balance by reflecting too much SW radiation from clouds,200

but these cover too small an area. A study by Konsta et al. (2022) showed that this type201

of bias is still present in six analyzed CMIP6 models in tropical marine clouds, using the202

General-circulation-model-Oriented CALIPSO Cloud Product [CALIPSO–GOCCP; Chepfer203

et al. (2010)] and Polarization & Anisotropy of Reflectances for Atmospheric Sciences204

coupled with Observations from a Lidar [PARASOL; Lier and Bach (2008)] as a refer-205

ence. They suggest improper simulation of subgrid-scale cloud heterogeneity as a cause.206

Compensating cloud biases in the Australian Community Climate and Earth System Sim-207

ulator (ACCESS) – Atmosphere-only model version 2 (AM2) over the SO were analyzed208

by Fiddes et al. (2022) and Fiddes et al. (2024). Possner et al. (2022) showed that over209

the SO, the DYAMOND GSRM ICON underestimates low-level cloud fraction on the210

order of 30% and overestimates net downward TOA SW radiation by approximately 10211

Wm−2 in the highest model resolution run (2.5 km). Zhao et al. (2022) reported a sim-212

ilar SW radiation bias in five analyzed CMIP6 models over the high-latitude SO and an213

underestimation of the total cloud fraction on the order of 10% over the entire 40–60°S214

SO. Recently, Ramadoss et al. (2024) analyzed 48 hours of km-scale ICON limited-area215

model NWP simulations over an SO region adjacent to Tasmania against the Clouds,216

Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRn oceaN217

(CAPRICORN) voyage cloud and precipitation observations (McFarquhar et al., 2021).218

They found the ICON cloud optical thickness was underestimated relative to Himawari-219

8 satellite observations but also identified large differences in cloud top phase.220

In general, sea surface temperature (SST) biases in the SO can originate either in221

the atmosphere (Hyder et al., 2018), caused by too much SW heating of the surface or222

too little LW cooling of the surface, such as in situations of too much cloud cover or cloud223

optical thickness, or in the ocean circulation. Interactions of both are also possible; for224

example, SST affecting clouds and clouds affecting the surface radiation. Using ERA5225

as a reference, Q. Zhang et al. (2023) have shown that SST biases have improved in CMIP6226

compared to CMIP5, with SST overall increasing in CMIP6. However, over the SO, this227

resulted in an even higher positive bias, especially in the Atlantic Ocean (AO) sector of228

the SO, increasing by up to 1°C. Luo et al. (2023) identified that the SO SST bias in an229

ensemble of 18 CMIP6 models originates not from the surface heat and radiation fluxes230

(using reanalyses as a reference) but from a warm bias in the Northern Atlantic Deep231

Water.232

The organization of this study is as follows. In Section 2 we introduce our SO voy-233

age and station dataset, the ceilometers, the lidar simulator software used in our com-234

parison, the ICON model and MERRA-2 and ERA5 reanalyses, a satellite dataset used,235

a precipitation detection algorithm developed for profile filtering, and a data partition-236

ing method based on cyclonic activity and stability. Our results, presented in Section237

3, consist of analyses of cloud occurrence by height and daily cloud cover from lidar ob-238

servations and the lidar simulator; TOA radiation, LWP, and IWP from satellite obser-239
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vations and the model and reanalysis output; and vertical profiles of relative humidity240

(RH) and potential temperature from a large set of radiosonde observations and the model241

and reanalysis output. Lastly, we discuss limitations of our study in Section 4 and state242

the conclusions in Section 5.243

2 Methods244

2.1 Voyage and Station Data245

Together, we analyzed data from 31 voyages of RV Polarstern, the resupply ves-246

sel (RSV) Aurora Australis, RV Tangaroa, RV Nathaniel B. Palmer, Her (now His) Majesty’s247

New Zealand Ship (HMNZS) Wellington, and one sub-Antarctic station (Macquarie Is-248

land) in the SO south of 40°S between 2010 and 2021. Fig. 1 shows a map of the cam-249

paigns, Table 1 lists the campaigns, and Table 2 lists references where available. The an-250

alyzed dataset comprised 2421 days of data south of 40°S, but the availability of ceilome-251

ter data was slightly shorter due to gaps in measurements.252

(a)

(d)

(b)

(c)

(e)

Figure 1. (a) A map showing the tracks of 31 voyages of RV Polarstern, RSV Aurora Aus-

tralis, RV Tangaroa, RV Nathaniel B. Palmer, and HMNZS Wellington and one sub-Antarctic

station (Macquarie Island) analyzed here. The tracks cover Antarctic sectors south of South

America, the Atlantic Ocean, Africa, Australia, and New Zealand in the years 2010–2021 (inclu-

sive). The dotted and dashed lines at 40°S and 55°S delineate the Southern Ocean area of our

analysis and its partitioning into two subsets, respectively. A photo of (b) RV Polarstern (©
Folke Mehrtens, Alfred-Wegener-Institut), (c) Lufft CHM 15k installed on RV Tangaroa (©
Peter Kuma, University of Canterbury), (d) Vaisala CL51 (© Jeff Aquilina, Bureau of Meteo-

rology), (e) Vaisala CT25K at Macquarie Island (© Simon P. Alexander, Australian Antarctic

Division).
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The campaigns contained ceilometer observations captured by the Vaisala CL51,253

CT25K, and the Lufft CHM 15k, described in detail below (Sections 2.2 and 2.3). A ceilome-254

ter is a low-power, near-infrared, vertically pointing lidar principally designed to mea-255

sure cloud base, but they also measure the full vertical structure of clouds as long as the256

laser signal is not attenuated by thick clouds, which can be used to infer additional in-257

formation such as a cloud mask and cloud occurrence by height. We note that during258

the MICRE campaign, the ceilometers Vaisala CT25K and CL51 were installed at the259

Macquarie Island station concurrently, but in our analysis we only used the CT25K data260

obtained from the Atmospheric Radiation Measurement (ARM) data archive.261

Apart from lidar observations, radiosondes were launched on weather balloons at262

regular synoptic times on the RV Polarstern, MARCUS, NBP17024, TAN1702, and TAN1802263

campaigns, measuring pressure, temperature, RH, and the global navigation satellite sys-264

tem coordinates. In total, about 2300 radiosonde profiles south of 40°S were available.265

Spatially and temporally collocated profiles were taken from the model and reanalyses.266

Because the time period covered by the ICON model output (2021–2024) was different267

from the time period covered by the observations (2010–2021), when comparing with ICON,268

we first had to remap the observation time to model time by taking the same time rel-269

ative to the start of the year. Consequently, we also had four virtual/model profiles (one270

for each year from 2021 to 2024) for each observed profile. Derived thermodynamic [vir-271

tual potential temperature (θv), lifting condensation level (LCL), etc.] and dynamic phys-272

ical quantities (wind speed and direction) for the measured vertical profiles were calcu-273

lated with the program radiosonde tool [rstool; Kuma (2024d)]. Surface meteorological274

quantities were measured continuously by an onboard automatic weather station or in-275

dividual instruments.276

Some of the observational data were likely used in the assimilation of the reanal-277

yses. The Macquarie Island station surface measurements and radiosonde profiles (not278

used in our analysis) were sent to the World Meteorological Organization Global Telecom-279

munication System (GTS). The measurements on the RSV Aurora Australis and HMNZS280

Wellington were not used outside of research purposes. The AWS measurements, but281

not lidar or radiosonde measurements on the RV Tangaroa voyages, were collected by282

the New Zealand MetService and communicated to the GTS. The ceilometer measure-283

ments on NBP1704 were not used outside of research purposes.284

2.2 Vaisala CL51 and CT25K285

The Vaisala CL51 and CT25K (photos in Fig. 1d, e) are ceilometers operating at286

near-infrared wavelengths of 910 nm and 905 nm, respectively. The CL51 can also be287

configured to emulate the Vaisala CL31. The maximum range is 15.4 km (CL51), 7.7 km288

(CL31 emulation mode with 5 m vertical resolution), and 7.5 km (CT25K). The verti-289

cal resolution is 10 m (5 m configurable) in CL51 and 30 m in CT25K observations. The290

sampling (temporal) resolution is configurable, and in our datasets, it is approximately291

6 s for CL51 on AA15-16, 16 s for CT25K on MARCUS and MICRE, 36 s for CL51 on292

RV Polarstern, and about 2.37 s for CL51 with CL31 emulation on TAN1502. The wave-293

lengths of 905 and 910 nm are both affected by water vapor absorption of about 20%294

in the mid-latitudes (Wiegner & Gasteiger, 2015; Wiegner et al., 2019), with 910 nm af-295

fected more strongly, but we do not expect this to be a significant issue, as explained in296

Kuma et al. (2021). The instrument data files containing raw uncalibrated backscatter297

were first converted to the Network Common Data Form (NetCDF) with cl2nc (Kuma,298

2024c) and then processed with the ALCF (Section 2.4) to produce absolutely calibrated299

attenuated volume backscattering coefficient (AVBC), cloud mask, cloud occurrence by300

height, and the total cloud fraction. Because the CT25K uses a very similar wavelength301

to the CL51, equivalent calculations as for the CL51 were done assuming a wavelength302

of 910 nm. The Vaisala CL51 and CT25K instruments were used on most of the voy-303
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Table 1. An overview of the analyzed campaigns (voyages and stations). Start, end, and the

number of days (UTC; inclusive) refer to the time period when the vessel was south of 40°S.
Abbreviations: ceilometer (ceil.), Australia (AU), New Zealand (NZ), South America (SA),

Atlantic Ocean (AO), and Africa (AF). The number of days is rounded to the nearest integer.

CL51/31 indicates CL51 configured to emulate CL31. Missing days in the ceilometer data were

HMNZSW16 (7 days): 24–27 November, 10 December, and 16–17 December 2016; MARCUS

(3 days): 8, 10 November, and 10 December 2017; MICRE (9 days): 7–8, 29 June, 5, 16 July,

15 August, 17 October 2016, 11 February, and 21 March 2017; and TAN1502 (1 day): 24 Jan-

uary.

Name Vessel or station Ceil. Region Start End Days

AA15-16 RSV Aurora Australis CL51 AU 2015-10-22 2016-02-22 124

HMNZSW16 HMNZS Wellington CHM 15k NZ 2016-11-23 2016-12-19 27

MARCUS RSV Aurora Australis CT25K AU 2017-10-29 2018-03-26 149

MICRE Macquarie Is. station CT25K AU/NZ 2016-04-03 2018-03-14 710

NBP1704 RV Nathaniel B. Palmer CHM 15k NZ 2017-04-14 2017-06-08 55

PS77/2 RV Polarstern CL51 SA/AO/AF 2010-12-01 2011-02-04 65

PS77/3 RV Polarstern CL51 SA/AO/AF 2011-02-07 2011-04-14 66

PS79/2 RV Polarstern CL51 SA/AO/AF 2011-12-06 2012-01-02 27

PS79/3 RV Polarstern CL51 SA/AO/AF 2012-01-10 2012-03-10 61

PS79/4 RV Polarstern CL51 SA/AO/AF 2012-03-14 2012-04-08 26

PS81/2 RV Polarstern CL51 SA/AO/AF 2012-12-02 2013-01-18 47

PS81/3 RV Polarstern CL51 SA/AO/AF 2013-01-22 2013-03-17 55

PS81/4 RV Polarstern CL51 SA/AO/AF 2013-03-18 2013-04-16 30

PS81/5 RV Polarstern CL51 SA/AO/AF 2013-04-20 2013-05-23 33

PS81/6 RV Polarstern CL51 SA/AO/AF 2013-06-10 2013-08-12 63

PS81/7 RV Polarstern CL51 SA/AO/AF 2013-08-15 2013-10-14 60

PS81/8 RV Polarstern CL51 SA/AO/AF 2013-11-12 2013-12-14 31

PS81/9 RV Polarstern CL51 SA/AO/AF 2013-12-21 2014-03-02 71

PS89 RV Polarstern CL51 SA/AO/AF 2014-12-05 2015-01-30 56

PS96 RV Polarstern CL51 SA/AO/AF 2015-12-08 2016-02-14 68

PS97 RV Polarstern CL51 SA/AO/AF 2016-02-15 2016-04-06 52

PS103 RV Polarstern CL51 SA/AO/AF 2016-12-18 2017-02-02 46

PS104 RV Polarstern CL51 SA/AO/AF 2017-02-08 2017-03-18 39

PS111 RV Polarstern CL51 SA/AO/AF 2018-01-21 2018-03-14 52

PS112 RV Polarstern CL51 SA/AO/AF 2018-03-18 2018-05-05 49

PS117 RV Polarstern CL51 SA/AO/AF 2018-12-18 2019-02-07 51

PS118 RV Polarstern CL51 SA/AO/AF 2019-02-18 2019-04-08 50

PS123 RV Polarstern CL51 SA/AO/AF 2021-01-10 2021-01-31 21

PS124 RV Polarstern CL51 SA/AO/AF 2021-02-03 2021-03-30 55

TAN1502 RV Tangaroa CL51/31 NZ 2015-01-20 2015-03-12 51

TAN1702 RV Tangaroa CHM 15k NZ 2017-03-09 2017-03-31 23

TAN1802 RV Tangaroa CHM 15k NZ 2018-02-07 2018-03-20 41

Total 2421
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Table 2. Campaign publication references.

Name References

AA15-16 Klekociuk et al. (2020)

MARCUS McFarquhar et al. (2021); Xia and McFarquhar (2024); Niu et al. (2024)

MICRE McFarquhar et al. (2021)

NBP1704 Ackley et al. (2020)

PS77/2 König-Langlo (2011e, 2011a, 2011c, 2014h); Fahrbach and Rohardt (2011)

PS77/3 König-Langlo (2011d, 2011b, 2012g, 2014i); Knust and Rohardt (2011)

PS79/2 König-Langlo (2012h, 2012d, 2012a, 2014j); Kattner and Rohardt (2012)

PS79/3 König-Langlo (2012i, 2012b, 2012e, 2014k); Wolf-Gladrow and Rohardt (2012)

PS79/4 König-Langlo (2012j, 2012c, 2012f, 2014l); Lucassen and Rohardt (2012)

PS81/2 König-Langlo (2013l, 2013a, 2013f, 2014a); Boebel and Rohardt (2013)

PS81/3 König-Langlo (2013m, 2013g, 2013b, 2014b); Gutt and Rohardt (2013)

PS81/4 König-Langlo (2013n, 2013c, 2013h, 2014c); Bohrmann and Rohardt (2013)

PS81/5 König-Langlo (2013o, 2013d, 2013i, 2014d); Jokat and Rohardt (2013)

PS81/6 König-Langlo (2013p, 2013e, 2013j, 2014e); Lemke and Rohardt (2013)

PS81/7 König-Langlo (2013q, 2013k, 2014f, 2016c); Meyer and Rohardt (2013)

PS81/8 König-Langlo (2013r, 2014g, 2014n, 2014p); Schlindwein and Rohardt (2014)

PS81/9 König-Langlo (2014r, 2014m, 2014o, 2014q); Knust and Rohardt (2014)

PS89 König-Langlo (2015a, 2015d, 2015b, 2015c); Boebel and Rohardt (2016)

PS96 König-Langlo (2016h, 2016a, 2016d, 2016f); Schröder and Rohardt (2017)

PS97 König-Langlo (2016i, 2016e, 2016b, 2016g); Lamy and Rohardt (2017)

PS103 König-Langlo (2017f, 2017d, 2017a, 2017c); Boebel and Rohardt (2018)

PS104 König-Langlo (2017e, 2017g, 2017b); Gohl and Rohardt (2018); Schmithüsen (2021g)

PS111 Schmithüsen (2019a, 2020a, 2021h, 2021a); Schröder and Rohardt (2018)

PS112 Schmithüsen (2019b, 2020b, 2021b, 2021i); Meyer and Rohardt (2018)

PS117 Schmithüsen (2019c, 2020c, 2021j, 2021c); Boebel and Rohardt (2019)

PS118 Schmithüsen (2019d, 2020d, 2021d, 2021k); Dorschel and Rohardt (2019)

PS123 Schmithüsen (2021m, 2021e, 2021l); Schmithüsen, Jens, and Wenzel (2021); Hoppmann, Tippen-

hauer, and Heitland (2023)

PS124 Schmithüsen (2021n, 2021f); Schmithüsen, Rohleder, et al. (2021); Hoppmann, Tippenhauer, and

Hellmer (2023)

TAN1802 Kremser et al. (2020, 2021)

ages and stations analyzed here. Fig. 2a shows an example of AVBC derived from the304

CL51 instrument data.305

2.3 Lufft CHM 15k306

The Lufft CHM 15k (photo in Fig. 1c) ceilometer operates at a near-infrared wave-307

length of 1064 nm. The maximum range is 15.4 km; the vertical resolution is 5 m in the308

near range (up to 150 m) and 15 m above; the sampling (temporal) resolution is 2 s; and309

the number of vertical levels is 1024. NetCDF files containing uncalibrated backscatter310

produced by the instrument were processed with the ALCF (Section 2.4) to produce AVBC,311

cloud mask, cloud occurrence by height, and the total cloud fraction. The CHM 15k was312

used on four voyages (HMNZSW16, TAN1702, TAN1802, and NBP1704).313
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Figure 2. An example of the attenuated volume backscattering coefficient (AVBC) (a) mea-

sured by the CL51 during 24 hours on the PS81/3 voyage and (b) an equivalent AVBC simulated

with the ALCF from ERA5 data during the same time period. The red line identifies the cloud

mask determined by the ALCF.

2.4 ALCF314

The Automatic Lidar and Ceilometer Framework (ALCF) is a ground-based lidar315

simulator and a tool for processing observed lidar data, supporting various instruments316

and models (Kuma et al., 2021). It performs radiative transfer calculations to derive equiv-317

alent lidar AVBC from an atmospheric model or a reanalysis, which can then be com-318

pared with observed AVBC. For this purpose, it takes the cloud fraction, liquid and ice319

mass mixing ratio, temperature, and pressure fields as an input and is run offline (on the320

model or reanalysis output rather than inside the model code). The lidar simulator in321

the ALCF is based on the instrument simulator Cloud Feedback Model Intercompari-322

son Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011).323

After AVBC is calculated, a cloud mask, cloud occurrence by height, and the total cloud324

fraction are determined. The total cloud fraction is defined as the fraction of profiles with325

clouds at any height in the lidar cloud mask. The ALCF has in the past been used by326

several research teams for model and reanalysis evaluation (Kuma et al., 2020; Kremser327

et al., 2021; Guyot et al., 2022; Pei et al., 2023; Whitehead et al., 2023; McDonald, Kuma,328

et al., 2024).329

Absolute calibration of the observed backscatter was performed by comparing the330

measured clear-sky molecular backscatter statistically with simulated clear-sky molec-331

ular backscatter. AVBC was resampled to 5 min temporal resolution and 50 m vertical332

resolution to increase the signal-to-noise ratio while having enough resolution to detect333

small-scale cloud variability. The noise standard deviation was calculated from AVBC334

at the highest range, where no clouds are expected. A cloud mask was calculated from335

AVBC using a fixed threshold of 2× 10−6m−1sr−1 after subtracting 5 standard devia-336
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tions of range-scaled noise. Fig. 2b shows an example of simulated Vaisala CL51 backscat-337

ter from ERA5 data, corresponding to a day of measurements by the instrument on the338

PS81/3 voyage.339

How attenuation of the lidar signal affects cloud detection is dependent on factors340

such as the optical thickness of the measured cloud and its backscattering phase func-341

tion, as well as the range-dependent noise standard deviation (Kuma et al., 2021). A rough342

estimate can be made under an assumption of a relatively strongly backscattering cloud343

of β = 100× 10−6m−1sr−1 at a height of r1 = 2 km, range-dependent noise βn at r2344

= 8 km of about 5× 10−6m−1sr−1, and cloud detection threshold βt = 2× 10−6m−1sr−1,345

noise multiplication factor f = 5. At full attenuation (relative to the detection thresh-346

old), the two-way attenuation factor A satisfies Aβ = βt+f×βn

(
r1
r2

)2

. This is equiv-347

alent to exponential decay (A = e−2δ) with optical depth δ (at the lidar wavelength)348

of about 1.7.349

2.5 ICON350

A atmosphere–ocean coupled GSRM version of the ICON model is in development351

as part of the nextGEMS project (Hohenegger et al., 2023). ICON is a very flexible model,352

allowing for simulations ranging from coarse-resolution ESM simulations, GSRM sim-353

ulations, limited area model simulations, and large eddy simulations (LES) for both weather354

prediction and climate projections. ICON uses the atmospheric component ICON-A (Giorgetta355

et al., 2018), whose physics is derived from ECHAM6 (Stevens et al., 2013), and the ocean356

component ICON-O (Korn et al., 2022). Earlier runs of the GSRM ICON from DYA-357

MOND were evaluated by Mauritsen et al. (2022).358

Here, we use a free-running (i.e., the weather conditions in the model do not cor-359

respond to reality) coupled GSRM simulation made for the purpose of climate projec-360

tion. nextGEMS has so far produced four cycles of model runs. We used a Cycle 3 run361

ngc3028 produced in 2023 (Koldunov et al., 2023; nextGEMS authors team, 2023) for362

a model time period of 20 January 2020 to 22 July 2025, of which we analyzed the pe-363

riod 2021–2024 (inclusive). The horizontal resolution of ngc3028 is about 5 km. The model364

output is available on 90 vertical levels and 3-hourly instantaneous temporal resolution.365

Unlike current general circulation models, the storm-resolving version of ICON does366

not use convective and cloud parameterization but relies on explicit simulation of con-367

vection and clouds on the model grid. Subgrid-scale clouds are not resolved, and the grid368

cell cloud fraction is always either 0 or 100%. While this makes the code development369

simpler without having to rely on uncertain parameterizations, it can miss smaller-scale370

clouds below the grid resolution. Turbulence and cloud microphysics have to be param-371

eterized in this model as in other models, and aerosols are derived from a climatology.372

To account for the radiative effects of subgrid-scale clouds, a cloud inhomogeneity fac-373

tor is introduced in the model, which scales down the cloud liquid water for radiative374

calculations. It ranges from 0.4 at lower tropospheric stability (LTS) of 0 K to 0.8 at 30 K.375

In addition, turbulent mixing in the Smagorinsky scheme was adjusted to allow mixing376

or entrainment in situations of no mixing under the traditional scheme, affecting stra-377

tocumulus clouds but not trade wind clouds (Segura et al., 2025).378

Because the analyzed ICON simulation was free-running (years 2021–2024, inclu-379

sive), weather and climate oscillations [such as the El Niño–Southern Oscillation (ENSO)380

phase] are not expected to be equivalent to reality. To compare with the observations381

collected during a different time period (years 2010–2021, inclusive), we compared the382

model output with observations at the same time of year and geographical location, as383

determined for each data point, such as a lidar profile or a radiosonde launch. In the ALCF,384

this was done using the override year option.385
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Due to our comparison being long-term and large-scale, it is expected that a com-386

parison between the free-running model and observations is statistically robust, despite387

weather-related differences between the two. Furthermore, the results from multiple cam-388

paigns are combined in a way that equal statistical weight is given to each campaign,389

eliminating an outsize influence of longer campaigns, allowing us to estimate uncertainty390

ranges under the assumption of independence of weather conditions between the cam-391

paigns, and ensuring that the results are statistically representative over the whole area392

covered by the campaigns. Different approaches to a comparison would be possible. For393

example, one could use only the first several days of a free-running simulation initialized394

from observations (or a reanalysis) for a comparison, as done in the Transpose-AMIP395

experiments (K. D. Williams et al., 2013), thus being able to compare clouds and the396

physical drivers under the same weather conditions. Another possibility is the use of a397

model nudged to a reanalysis (Kuma et al., 2020), but this was not available for our ICON398

simulations. We discuss further the implications of comparing the observations with a399

free-running model in Section 4.400

2.6 MERRA-2401

The Modern-Era Retrospective analysis for Research and Applications, Version 2402

(MERRA-2) is a reanalysis produced by the Global Modeling and Assimilation Office403

at the NASA Goddard Space Flight Center (Gelaro et al., 2017). It uses version 5.12.4404

of the Goddard Earth Observing System (GEOS) atmospheric model (Rienecker et al.,405

2008; Molod et al., 2015). Non-convective clouds (condensation, autoconversion, and evap-406

oration) are parameterized using a prognostic scheme (Bacmeister et al., 2006), and sub-407

grid cloud fraction is determined using total water distribution and a critical RH thresh-408

old. The reanalysis output analyzed here is available at a spatial resolution of 0.5° of lat-409

itude and 0.625° of longitude, which is about 56 km in the north–south direction and 35410

km in the east–west direction at 60°S. The number of vertical model levels is 72. Here,411

we use the following products: 1-hourly instantaneous 2D single-level diagnostics (M2I1NXASM)412

for 2-m temperature and humidity; 3-hourly instantaneous 3D assimilated meteorolog-413

ical fields (M2I3NVASM) for cloud quantities, pressure, and temperature; 1-hourly av-414

erage 2D surface flux diagnostics (M2T1NXFLX) for precipitation; and 1-hourly aver-415

age 2D radiation diagnostics (M2T1NXRAD) for radiation quantities (Bosilovich et al.,416

2016). Vertically resolved fields in M2I3NVASM start at a height of about 60 m, which417

limits our analysis of fog and very low-level (< 250 m) clouds in this reanalysis.418

2.7 ERA5419

ERA5 (ECMWF, 2019) is a reanalysis produced by the ECMWF. It is based on420

an NWP model IFS version CY41R2. It uses the Tiedtke (1993) prognostic cloud scheme421

and the Forbes and Ahlgrimm (2014) scheme for mixed-phase clouds. The horizontal res-422

olution is 0.25° in latitude and longitude, which is about 28 km in the north–south di-423

rection and 14 km in the east–west direction at 60°S. Internally, the model uses 137 ver-424

tical levels. Here, we use output at 1-hourly instantaneous time intervals, except for ra-425

diation quantities, which are accumulations (from these we calculate daily means). Ver-426

tically resolved quantities are available on 37 pressure levels.427

2.8 CERES428

TOA radiation quantities are taken from the Clouds and the Earth’s Radiant En-429

ergy System (CERES) instruments onboard the Terra and Aqua satellites (Wielicki et430

al., 1996; Loeb et al., 2018). In our analysis, we used the adjusted all-sky SW and LW431

upwelling fluxes at TOA, adjusted cloud LWP and IWP, and adjusted cloud amount from432

the synoptic TOA and surface fluxes and clouds 1-degree daily edition 4A product (CER SYN1deg-433

Day Terra-Aqua-MODIS Edition4A) (Doelling et al., 2013, 2016). The water paths in434
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the product are computed from optical depth and particle size from geostationary satel-435

lites and the Moderate Resolution Imaging Spectroradiometer [MODIS, Pagano and Durham436

(1993)] (CERES author team, 2025). The water paths were multiplied by the cloud amount437

to get the water path relative to the whole grid cell area, equivalent to the definition used438

in ICON and the reanalyses.439

Radiation and water path calculations presented in the results (Section 3) were com-440

pleted such that they always represent daily means in order to be consistent with the441

CERES SYN1deg data. Therefore, every instantaneous profile in the simulated lidar data442

was assigned a daily mean radiation and water path value corresponding to the day (in443

the Coordinated Universal Time; UTC). In turn, the average radiation and water paths444

during the entire voyage or station observation period were calculated as averages of the445

profile values. In the observed lidar data, the daily mean values were taken from the spa-446

tially and temporally co-located CERES SYN1deg data for the day (in UTC). The voy-447

age and station averages were calculated in the same way.448

2.9 Precipitation Identification Using Machine Learning449

Precipitation can cause strong enough lidar backscattering to be recognized as clouds450

by the threshold-based cloud detection method used in the ALCF. This is undesirable451

if equivalent precipitation backscatter is not included in the simulated lidar profiles. It452

was not possible to include precipitation simulation in the ALCF due to the absence of453

required fields of liquid and ice precipitation mass mixing ratios in the model and reanal-454

ysis output. While the fields could in principle be calculated from surface fluxes, such455

a calculation would be highly uncertain. The required radiation calculations for precip-456

itation are also currently not implemented in the ALCF, even though this is a planned457

future addition. In order to achieve a fair comparison of observations with the model and458

reanalysis output, we exclude observed and simulated lidar profiles with precipitation,459

either manually or using an automated method. It is relatively difficult to distinguish460

precipitation backscatter from cloud backscatter in lidar observations, especially when461

only one wavelength channel and no polarized channel are available (Kim et al., 2020).462

In the model and reanalyses, the same can be accomplished relatively easily by exclud-463

ing profiles exceeding a certain surface precipitation flux. In the observations, using pre-464

cipitation flux measurements from rain gauges can be very unreliable on ships due to ship465

movement, turbulence caused by nearby ship structures, and sea spray. Our analysis of466

rain gauge data from the RV Tangaroa showed large discrepancies between the rain gauge467

time series and human-performed synoptic observations, as well as large inconsistencies468

in the rain gauge time series. Human-performed observations of precipitation presence469

or absence are expected to be reliable but only cover a limited set of times. Therefore,470

it was desirable to implement a method of detecting precipitation from observed backscat-471

ter profiles alone.472

On the RV Polarstern voyages, regular manual synoptic observations were avail-473

able and included precipitation presence or absence and type. We used this dataset to474

train a convolutional artificial neural network (ANN) to recognize profiles with precip-475

itation from lidar backscatter data (Fig. 3a), implemented in the TensorFlow ANN frame-476

work (Abadi et al., 2015). Samples of short time intervals (10 min) of very low-level li-477

dar backscatter (0–250 m) were classified as clear, rain, snow, and fog, using the synop-478

tic observations as a training dataset (Fig. 3b). From these, a binary, mutually exclu-479

sive classification of profiles as precipitating (rain or snow) or dry (clear or fog) was de-480

rived. For detecting model and reanalysis precipitation, we used a fixed threshold for sur-481

face precipitation flux of 0.1 mm h−1 (the ANN was not used).482

The ANN achieved 65% sensitivity and 87% specificity when the true positive rate483

(26%) was made to match observations. The receiver operating characteristic curve is484

shown in Fig. 3c. We considered these rates satisfactory for the purpose of filtering pre-485

–13–



manuscript submitted to JGR: Atmospheres

cipitation profiles. Fig. 3d shows examples of the predicted precipitation compared to486

human-performed observations. The main ANN (‘ANN‘ in Fig. 3) was trained on all data,487

and ancillary ANNs (‘ANN2‘ in Fig. 3) were trained with portions of voyage data ex-488

cluded to test the results for each voyage.489

2.10 Partitioning by Cyclonic Activity and Stability490

In our analysis, we partitioned our dataset by cyclonic activity and stability into491

multiple subsets to evaluate cloud biases in the context of the main physical controlling492

processes. The SO is a region of the occurrence of both extratropical and polar cyclones.493

Cyclonic activity results in cloud formation at the air mass boundaries along the cold494

and warm fronts, as well as inside the cold sector, after a passing cold sector destabilizes495

the atmosphere relative to the surface temperature. In the cold front and cold sector,496
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Convolution 2D (256, 3 × 3) Maximum pooling 2D (1 × 2) Dropout (20%) Dense (64) Dense (4)Flatten Output (4)

(a) ANN diagram

(b) Random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0‒250 m (vertical axis)

(c) Receiver operating characteristic (d) Measured and predicted precipitation time series
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Figure 3. Artificial neural network (ANN) for prediction of precipitation in lidar backscat-

ter. (a) Diagram showing the TensorFlow structure of the ANN, (b) randomly selected example

samples of very low-level (0–250 m) backscatter in four categories (clear, fog, rain, and snow),

as determined by coincident manual weather observations, (c) receiver operating characteristic

diagram of the ANN, (d) examples of 10-day time series of human-observed (“HUM”) and pre-

dicted precipitation based on an ANN trained on all voyages (“ANN”) and all voyages except

for the shown voyage (“ANN2”) during three randomly selected voyages with the available data.

Here, by “randomly selected,” we mean selected from the top of a permutation generated by a

pseudo-random number generator to prevent authors’ bias in the selection.
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clouds are convectively driven, including deep convection, and the advection of colder497

air masses over warmer ocean surfaces can trigger convection and subsequent cloud for-498

mation. In contrast, warm advection can trigger fog or cloud formation by boundary layer499

air cooled by the ocean surface until it reaches saturation. More quiescent areas outside500

of cyclones can also be associated with clouds. These can be, for example, associated with501

clouds formed by warm or cold advection outside of cyclones, persistent clouds, clouds502

formed due to diurnal heating or cooling, or clouds formed due to ocean currents. Bound-503

ary layer stability can be expected to be associated with clouds by either allowing con-504

vection and turbulence under weak stability, inhibiting convection turbulence under strong505

stability, and by capping inversion controlling the cloud top height or trapping moist air506

near the surface and preventing fog dispersion. Therefore, dividing our dataset by these507

subsets allows us to quantify model and reanalysis biases associated with some of the508

main physical processes controlling cloud formation, persistence, and dissipation. Other509

methods of subsetting, such as using the International Satellite Cloud Climatology Project510

(ISCCP) pressure–optical thickness diagram (Rossow & Schiffer, 1991, 1999; Hahn et al.,511

2001) to separate profiles by cloud regimes and other cloud regime classifications (Oreopoulos512

et al., 2016; A. Schuddeboom et al., 2018), would be feasible.513

We partitioned our data into two mutually exclusive subsets by cyclonic activity.514

For this purpose, we used a cyclone tracking algorithm to identify extratropical cyclones515

and polar cyclones over the SO in the reanalysis and ICON data. We used the open-source516

cyclone tracking package CyTRACK (Pérez-Alarcón et al., 2024). Generally, what con-517

stitutes an extratropical cyclone is considered relatively arbitrary due to the very large518

variability of the cyclones (Neu et al., 2013). The CyTRACK algorithm uses mean sea519

level pressure and wind speed thresholds as well as tracking across time steps to iden-520

tify cyclone centers and their radii in each time step. With this information, we could521

classify every location at a given time as either cyclonic or non-cyclonic. Due to a rel-522

atively small total area covered by cyclones, as identified by the cyclone center and ra-523

dius, for every time step and cyclone, we defined a cyclonic area as a circle of double the524

radius identified by CyTRACK centered at the cyclone center. All other areas were de-525

fined as non-cyclonic. For identifying cyclones in the observations and the reanalyses,526

ERA5 pressure and wind fields were used as the input to CyTRACK. This is justified527

by the fact that the large-scale pressure and wind fields in ERA5 are likely sufficiently528

close to reality. McErlich et al. (2023) have shown that wind is simulated well in ERA5529
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Figure 4. Lower tropospheric stability (LTS) distribution in (a) ERA5 and (b) MERRA-2

calculated for the 31 voyage tracks and one station from the highest instantaneous temporal reso-

lution data available. Shown is also the chosen dividing threshold of 12 K for conditions of weak

and strong stability.
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relative to the WindSat polarimetric microwave radiometer measurements (Meissner &530

Wentz, 2009). For identifying cyclones in ICON, its own pressure and wind fields were531

used as the input to CyTRACK because ICON is free-running, and thus the pressure532

and wind fields are different from reality. Subsetting by proximity to cyclones is a rel-533

atively crude measure because it does not take into account the different sectors of cy-534

clones, which are commonly associated with different weather situations. However, this535

was a choice made for simplicity of the analysis, given the quantity of data. Konstali et536

al. (2024) performed a more complex attribution of precipitation to individual cyclone537

features.538

In addition to the above, we partitioned our data into two mutually exclusive sub-539

sets based on LTS, which is derived as the difference between the potential temperature540

at 700 hPa and the surface. Based on a histogram of LTS in ERA5 and MERRA-2 cal-541

culated at all voyage tracks and stations (Fig. 4), we determined a statistically based di-542

viding threshold of 12 K for weak stability (< 12 K) and strong stability (≥ 12 K) con-543

ditions.544

3 Results545

3.1 Cyclonic Activity and Stability546

Fig. 5a and b show the geographical distribution of the fraction of cyclonic days547

as determined by the cyclone tracking algorithm applied to the ERA5 reanalysis and ICON548

data (Section 2.10). As expected, the strongest cyclonic activity is in the high-latitude549

SO zone and is relatively zonally symmetric at all latitudes. The pattern matches rea-550

sonably well with Hoskins and Hodges (2005). While both reanalysis and ICON agree551

within about 8% in most areas, ICON is prevailingly more cyclonic by about 4%. There552

are clear differences, particularly in the highest occurrence rate regions, such as around553

Cape Adare, which is up to 20% more cyclonic in ICON, and the Weddell and Belling-554

shausen Seas, where ICON is less cyclonic by up to 10%. These differences might, how-555

ever, stem from the relatively short time periods of comparison (4 years) and the fact556

that ICON is free-running.557

Fig. 5c, d show the geographical distribution of the conditions of weak and strong558

stability as determined by the LTS (Section 2.10). Conditions of weak stability are preva-559

lent in the mid-to-high SO (50–65°S), which might be explained by the relatively cold560

near-surface air overlying the relatively warm sea surface. Conditions of strong stabil-561

ity are common elsewhere over the SO. The distribution is also less zonally symmetric562

than the cyclonic activity. In the high-latitude SO, the presence of sea ice might have563

a substantial stabilizing effect (Knight et al., 2024). ICON is also substantially less sta-564

ble than ERA5 across the whole region. In Section 3.5 we show that based on radiosonde565

observations, the bias is in ICON and not ERA5, and it is the result of underestimated566

temperature at heights corresponding to 700 hPa, as well as overestimated near-surface567

(2 m) air temperature, characterized by a higher frequency of occurrence in the 1–7°C568

range compared to observations at radiosonde launch locations (Fig. 6a). This may be569

related to large-scale circulation in ICON or radiative transfer biases.570

3.2 Cloud Occurrence by Height571

We used the ALCF to derive cloud occurrence by height and the total cloud frac-572

tion from observations, ICON, ERA5, and MERRA-2. The results for all campaigns in-573

dividually are shown in Fig. S1. As shown in this figure, the biases are relatively con-574

sistent across the campaigns and longitudes. In addition, we aggregated the campaigns575

by calculating the averages and percentiles of all individual profiles, presented in Fig. 7.576

The analysis shows that the total cloud fraction is underestimated in ICON by about577

10% and in the reanalyses by about 20%. When analyzed by height, ICON overestimates578
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Cyclonic situations

(a) ERA5 (2010–2013) (b) ICON (2021–2024)

Stability

(c) ERA5 (2010–2013) (d) ICON (2021–2024)

Figure 5. Geographical distribution of (a, b) cyclonic days and (b, d) strong stability

(LTS ≥ 12 K) time steps in (a, c) ERA5 in years 2010–2013 (inclusive) and (b, d) ICON in

model years 2021–2023 (free-running). Cyclonic days are expressed as a fraction of the number of

days with cyclonic activity, defined as grid points located within a double radius of any cyclone

on a given day (UTC), as identified by CyTRACK. The voyage tracks and the point of the MI-

CRE campaign are also shown.
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Figure 6. Histograms of near-surface (a) air temperature, (b) relative humidity, and (c)

lower tropospheric stability at radiosonde launch locations in the observations and the corre-

sponding locations and times in the model and reanalyses. Only locations south of 40°S are

included.

cloud occurrence below 1 km and underestimates it above; MERRA-2 underestimates579

cloud occurrence at all heights by up to 10%, especially near the surface; and ERA5 sim-580

ulates cloud occurrence relatively well above 1 km but strongly underestimates it near581

the surface. We note that fog or very low-level clouds are strongly underestimated in the582

reanalyses (fog and clouds are both included in the cloud occurrence). We conclude that583

the ICON results match the observations better than the reanalyses in this metric.584

For all observations considered (Fig. 7a), the data show cloud occurrence peaking585

near the surface, whereas the model and reanalyses show a higher peak (at about 500 m).586

The model and reanalyses generally underestimate the total cloud fraction by 10–30%587

and show a strong drop in cloud occurrence near the surface, which is not identified in588

the observations. ICON and ERA5 overestimate cloud occurrence at their peak (between589

0 and 1 km). Above 1 km, ICON and MERRA-2 underestimate cloud occurrence, but590

ERA5 is accurate to about 3% or less. The exaggerated peak in the model and reanal-591

yses is partly explained by the LCL distribution, which peaks about 300 m higher in the592

model and reanalyses than in the observations (near the surface), although this is not593

very pronounced. This is indicative of near-surface RH often being close to saturation594

in the observations but not in the model and reanalyses (Fig. 6b). There are multiple595

possible reasons for this bias, such as how the statistical distribution of RH within a grid596

cell is represented in the model and reanalyses, the air–sea moisture flux parameteriza-597

tion, or weaker stability in the model and reanalyses, which can cause more boundary598

mixing across heights and thus lower near-surface RH.599

When the data are subset by latitude (Fig. 7b, c), we see that the low-latitude SO600

zone (40–55°S) displays a stronger peak of cloud occurrence near the surface than the601

high-latitude SO zone (between 55°S and the Antarctic coast), and this could be because602

higher latitudes have a greater prevalence of weakly stable profiles (Fig. 5c, d), although603

more stable profiles populate regions south of 65°S close to the Antarctic coast. Cyclonic604

activity is also stronger in high-latitude SO, which is typically associated with shallow605

or deep convection rather than the very stable stratification necessary for fog formation.606

The low- and high-latitude SO zones show similar biases in the model and reanalyses as607

in the general case, but ERA5 does not overestimate the peak in the low-latitude SO zone608

(very low-level cloud occurrence is still strongly underestimated).609

When the data are subset as either cyclonic or non-cyclonic situations (Fig. 7d, e),610

we see that the cyclonic situations have a larger amount of observed cloudiness, includ-611

ing peak and total cloud fraction, by about 10%. In the cyclonic situations, the model612

and reanalysis vertical profiles of cloud occurrence compare well with observations, but613

they peak higher by about 200 m and are larger by about 8%. The reanalyses tend to614
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underestimate cloud occurrence above 1 km by about 5% and near the surface by about615

15%. Non-cyclonic situations are similar to the general case, also because they form the616

majority of analyzed profiles (83%).617

When the data are subset by stability (Fig. 7f, g), as defined in Section 2.10, we618

see that in situations of strong stability, cloud occurrence peaks strongly near the sur-619

face in observations, compared to situations of weak stability, where the peak is more620

diffuse between 0 and 1 km. Physically, conditions of strong stability are associated with621

the formation of advection fog, such as in situations of warm air advection from the north622

over a colder sea surface, thus inducing fog formation by cooling of the warm and hu-623

mid air by the cold surface. In situations of strong stability, the model and reanalyses624

have smaller biases than in weak stability, with an overestimated peak of up to 12%, un-625

derestimated cloud occurrence above 1 km by up to 5%, and underestimated cloud oc-626

currence near the surface by about 10% in the reanalyses but not ICON. In situations627

of weak stability, the bias in ICON is very pronounced, with a much larger peak in cloud628

occurrence at about 500 m; the reanalyses underestimate cloud occurrence below 1 km,629

especially near the surface; and MERRA-2 underestimates cloud occurrence more strongly630

at almost all heights.631

In all subsets, even when the model and reanalyses overestimate cloud occurrence632

at some altitudes, they always substantially underestimate the total cloud fraction. ICON633

can be generally characterized as substantially overestimating cloud occurrence below634

1 km and underestimating above, underestimating the total cloud fraction, and show-635

ing the greatest biases in conditions of weak stability and non-cyclonic conditions. ICON636

also has a peak cloud occurrence at higher altitudes than observations (500 m vs. near637

the surface), and correspondingly, its LCL tends to be higher. MERRA-2 can be gen-638

erally characterized as underestimating cloud occurrence at nearly all altitudes as well639

as the total cloud fraction, but mostly above and below 500 m (the peak at 500 m is well640

represented). MERRA-2 displays the largest errors relative to observations in the low-641

latitude SO zone and under weak stability. ERA5 can be generally characterized as rep-642

resenting cloud occurrence correctly above about 1.5 km, overestimating between 500 m643

and 1 km, but underestimating very low-level cloud occurrence. The total cloud frac-644

tion is strongly underestimated in all subsets. ERA5 has a tendency towards greater cloud645

underestimation in the low-latitude SO zone and under weak stability; conversely, it over-646

estimates the peak of cloud occurrence at 500 m in the high-latitude SO zone and un-647

der strong stability.648

3.3 Daily Cloud Cover649

We also analyzed the daily cloud cover (total cloud fraction) distribution. This is650

a measure of cloudiness, irrespective of height, calculated over the course of a day (UTC).651

A cloud detected at any height means that the lidar profile was classified as cloudy; oth-652

erwise, it was classified as a clear sky. When all profiles in a day are taken together, the653

cloud cover for the day is defined as the fraction of cloudy profiles in the total number654

of profiles. It is expressed in oktas (multiples of 1/8), reflecting the 3-hourly output of655

MERRA-2 and ICON, i.e., 8 times per day. The same calculation is done for the lidar656

observations as for the simulated lidar profiles. We use the term “okta” independently657

of its use in instantaneous synoptic observations, and here it simply means 1/8 (0.125)658

of the daily cloud cover.659

In Fig. 8 we show the results for the same subsets of data as in Section 3.2. Ob-660

servations display the highest proportion of high cloud cover values (5–8 oktas), peak-661

ing at 7 oktas. This pattern is not represented by ICON or either reanalysis. While ICON662

is closest to matching the observed distribution, it tends to be 1 okta clearer than the663

observations, peaking at 6 oktas, and substantially underestimating days with 8 oktas.664

Overall, the reanalyses show results similar to each other, underestimating cloud cover665
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Figure 7. Cloud occurrence by height calculated as the average of all voyages and stations

and lifting condensation level (LCL) distribution. The LCL is derived from radiosonde profiles

and equivalent model and reanalysis profiles, which were not available for all voyages and times.

The total cloud fraction (CF), average outgoing shortwave (SW) and longwave (LW) radiation,

and the relative frequency of occurrence (RFO) are shown. The bands are the 16th–84th per-

centile, calculated from the set of all voyages and stations.
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by about 2 oktas and strongly underestimating days with 7 and 8 oktas. Of the two re-666

analyses, MERRA-2 has slightly higher cloud cover than ERA5, by about 6% at 6 oc-667

tas, which makes it more consistent with observations.668

When analyzed by subsets, observations in the cyclonic subset show the highest669

cloud cover, with 8 oktas occurring on one half of such days (Fig. 8d). This sensitivity670

to cyclonic conditions is not observed in ICON or the reanalyses. Interestingly, clear sky671

days (0 oktas) also have a local maximum peaking at about 15% in this subset. When672

we contrast the low- and high-latitude zones, we see that the high-latitude zone tends673

to have greater cloud cover, peaking at 8 oktas (Fig. 8c). The high-latitude zone also has674

almost no clear sky or small cloud cover cases (0–4 oktas). ICON and the reanalyses rep-675

resent this characteristic of the distribution well for 0–3 oktas, but otherwise show bi-676

ases similar to the general case. One of the greatest biases is present in ERA5 in the sub-677

set of weak stability, in which ERA5 peaks at 3 oktas, while the observations peak at678

7 oktas and show negligible cloud cover below 5 oktas.679

3.4 Top of Atmosphere Radiation, Liquid and Ice Water Path680

In Fig. 7, we also show the mean outgoing SW and LW TOA radiation, whose cal-681

culation is described in Section 2.8. In observations, these come from daily mean CERES682

measurements averaged over the voyage tracks or a station location, whereas in the model683

and reanalyses they come from daily means of TOA radiation in the output averaged684

over the same location and time periods.685

In the general case (Fig. 7a), ICON and ERA5 underestimate the outgoing SW ra-686

diation by 22 and 20 Wm−2 (respectively), and MERRA-2 overestimates it by 6 Wm−2.687

While in ICON and ERA5, this is in line with the underestimated total cloud fraction688

of 10% and 22% (respectively); in MERRA-2, the opposite result is expected from the689

underestimated total cloud fraction of about 20%. Neglecting the direct radiative effects690

of sea and aerosol, this is only possible if the albedo of cloudy areas is overestimated, com-691

pensating for the lack of cloudy areas.692

We note that the radiative transfer calculations used in the lidar simulator mean693

that the impact of both cloud phase and cloud fraction are convolved to produce the cloud694

mask. Therefore, the cloud occurrence is not affected by any cloud phase biases as long695

as the cloud is optically thick enough to be detected and the laser signal is not too at-696

tenuated. A combination of underestimated total cloud fraction and overestimated out-697

going SW at TOA is indicative of an overestimated cloud albedo (in cloudy areas) due698

to either cloud liquid and ice water content, cloud phase, droplet or ice crystal size dis-699

tribution, shape or orientation of ice crystals, cloud overlap, or their combination. The700

influence of cold clouds is likely second-order due to the much larger typical effective ra-701

dius of ice crystals than cloud droplets.702

In contrast to SW radiation, the model and reanalyses have much smaller LW ra-703

diation biases, which is expected due to the prevailing low-level clouds having similar tem-704

peratures as the surface. Roh et al. (2021) also found LW biases to be much lower than705

SW biases in DYAMOND models over the tropical Atlantic Ocean. In ICON, the out-706

going LW radiation is overestimated by 5% (Fig. 7a). This is likely caused by an under-707

estimated total cloud fraction exposing a larger sea surface area to cooling to space, which708

is typically warmer than the atmospheric temperature at 0–2 km, where most of the clouds709

are located. In the MERRA-2 and ERA5 reanalyses, the LW biases are also slightly pos-710

itive, 4 and 5 Wm−2, respectively. This is again in line with the underestimated total711

cloud fraction by about 20%. However, if the clouds are too thick, as expected from the712

SW results, this might also provide a compensating effect, in which too small a cloud713

area is counteracted by greater optical thickness in the LW spectrum, thus reducing the714

outgoing LW radiation more in thick relative to thinner clouds. For thin clouds, the out-715

going TOA LW radiation originates both from the warmer surface (partly blocked by716
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Figure 8. Daily total cloud fraction histograms calculated as the average of all voyage and

station histograms. The total cloud fraction of a day (UTC) is calculated as a fraction of cloudy

(based on the cloud mask) observed (OBS) or simulated lidar profiles. The model, reanalyses,

and subsets are as in Fig. 7.
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the clouds) and the clouds, whereas for thick clouds, the outgoing TOA LW radiation717

originates mostly from the colder-than-surface clouds.718

In all the subsets (Fig. 7b–g), the same type of biases are observed, namely the out-719

going SW radiation is underestimated in ICON and ERA5 and overestimated in MERRA-720

2, and the outgoing LW radiation is overestimated in the model and reanalyses. Even721

though the total cloud fraction is higher by 6% over the high-latitude SO than the low-722

latitude SO, the outgoing SW radiation is much greater by 41 Wm−2, implying a much723

greater cloud albedo (of cloudy areas) over the high-latitude SO. ICON has little differ-724

ence in the total cloud fraction between low- and high-latitude SO, but greater outgo-725

ing SW radiation by 14 Wm−2 over the high-latitude SO, likely due to thicker clouds726

under deeper convection in less stable and more cyclonic conditions relative to the low-727

latitude SO. In contrast, the reanalyses showed both greater total cloud fraction and out-728

going SW radiation over the high-latitude SO compared to the low-latitude SO.729

Fig. 9a, b shows the SW and LW radiation as histograms and their corresponding730

averages. ERA5 and ICON overestimate the frequency of outgoing SW near 80 Wm−2
731

(Fig. 9a), which probably relates to clear sky situations, as expected from the underes-732

timated cloud fraction. They also underestimate the frequency of highly reflective sit-733

uations above 200 Wm−2. MERRA-2 exhibits the too-few-too-bright problem in terms734

of overestimating the frequency of SW reflectivity around 290 Wm−2, given that the to-735

tal cloud fraction in MERRA-2 is strongly underestimated. The LW distribution shows736

that the model and reanalyses overestimate outgoing LW (Fig. 9b), which is expected737

from the underestimated cloud fraction, exposing more of the warmer ocean surface rel-738

ative to colder clouds.739

Fig. 9c–f shows the LWP and IWP distributions as histograms and their correspond-740

ing averages. The LWP and IWP are calculated from the mass of water in the column741

divided by the area of the column, i.e., not just the area of the cloudy portion of the col-742

umn, as in some definitions. The available observational satellite reference for the LWP743

and IWP over high latitudes is unfortunately very uncertain due to a high solar zenith744

angle and the inability of passive visible and infrared retrievals to detect phase below745

the cloud top of mixed-phase clouds (Huang et al., 2006; Greenwald, 2009; Seethala &746

Horváth, 2010; Eliasson et al., 2011; Duncan & Eriksson, 2018; Khanal et al., 2020), and747

this limits our comparison. The LWP distribution shows that the model and reanaly-748

ses overestimate cases with a near-zero LWP (Fig. 9c), which relates to the underesti-749

mated total cloud fraction. MERRA-2 shows quite overestimated high-LWP situations,750

which is most likely related to the too-few-too-bright problem of simulating lower total751

cloud fraction but clouds with a higher LWP to compensate. The IWP (Fig. 9d) is some-752

what less important radiatively than LWP because of the typically larger and less nu-753

merous hydrometeors. Similarly to the LWP, the model and reanalyses overestimate sit-754

uations with a near-zero IWP. ERA5 is otherwise simulating the IWP distribution well,755

but ICON and MERRA-2 underestimate the IWP. In the cloudy situations (Fig. 9e, f),756

it can be seen more distinctly that MERRA-2 overestimates moderate (0.05–0.15 kg m−2)757

and high LWP (over 0.15 kg m−2), and ERA5 and ICON underestimate moderate LWP.758

ICON also overestimates high LWP, resulting in overestimated average LWP.759

3.5 Relative humidity and potential temperature profiles760

In order to examine the potential link in the cloud biases to the local physical con-761

ditions, we analyzed the radiosonde profiles available from the campaigns (Section 2.1).762

The profiles were partitioned into the same subsets as above (Sections 3.2 and 3.3). We763

focus on comparing θv and RH, being one of the primary factors affecting shallow con-764

vection and the associated low-level cloud formation and dissipation. The observed, model,765

and reanalysis profiles of θv and RH are shown in Fig. 10.766
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Figure 9. Histograms and averages of outgoing (a) SW, (b) LW radiation at TOA, (c, e)

liquid water path, and (d, f) ice water path in CERES SYN1deg observations (OBS), ICON,

MERRA-2, and ERA5. The results are shown for (a–d) all and (e, f) cloudy profiles. All cam-

paigns are weighted equally. The statistics are calculated from daily mean values corresponding

to each time step and geographical location of the voyage tracks and stations.

Overall, the mean θv is accurate to within 0.5 K in ICON and MERRA-2, except767

for ICON being colder by up to 2.5 K in the mid-to-high troposphere (less stable) (Fig. 10a).768

Larger differences exist, however, in the 40–55°S zone, where ICON is colder by about769

5 K at 5 km (Fig. 10b). In other subsets, the bias is relatively small. MERRA-2 and ERA5770

are very close to the observations, possibly due to a high accuracy of assimilation of this771

quantity. Notably, the variability of θv (as represented by the percentiles) is much smaller772

in ICON than in the observations. This indicates that this model’s internal variability773

in the lower-tropospheric thermodynamic conditions in the SO is smaller than in real-774

ity.775
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Figure 10. Virtual potential temperature (θv) and relative humidity (RH) determined from

radiosonde launches and co-located profiles in ICON, ERA5, and MERRA-2 in subsets as in

Fig. 7. The solid lines are the average calculated from the averages of every individual voyage

and station. The bands span the 16th–84th percentiles, calculated from the distribution of the

voyage and station averages. Shown is also the relative frequency of occurrence and the number

of profiles in each subset.
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Figure 11. Relative humidity histograms calculated from the observed radiosonde profiles

and the equivalent model and reanalysis profiles for (a–d) all bins, (e–h) clear bins, and (i–l)

cloudy bins, determined from the lidar cloud mask. Model and reanalysis histogram values are

relative to observations. The histogram values are normalized to 100% for each level separately.

All campaigns are weighted equally.

RH displays much larger biases. In all subsets, ICON is too humid in the first 1 km776

by about 5%, but very accurate above, except for the 40–55°S zone and conditions of weak777

stability (Fig. 10b, g), where it is too dry between about 1 and 3 km. Even though RH778

measured by radiosondes in the first 100 m is not very different between the observations779

and the model and reanalyses (Fig. 10a), near-surface (2-m) RH at the radiosonde launch780

locations is much greater in the observations, most often close to 100%, unlike in the model781

and reanalyses, where 85% tends to be the most common (Fig. 6b). This also explains782

why LCL is much more frequently located at the surface in the observations than in the783

model and reanalyses (Fig. 7a). LCL is fully determined by near-surface temperature,784

near-surface RH, and surface pressure.785
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Fig. S2 shows θv and RH profiles for profiles containing fog, cloud at 500 m, and786

cloud at 1.5 km. These situations are characterized by particular cloud biases as iden-787

tified in the lidar cloud occurrence analysis. The rationale is to examine θv and RH as-788

sociated with these situations. Foggy situations are characterized by a rapid increase of789

θv with height and an observed average RH of about 90% near the surface (Fig. S2a).790

In contrast, the model and reanalyses predict higher RH in the first 100 m under foggy791

conditions by several percentage points. In situations with clouds occurring at 500 m,792

θv is relatively constant between the surface and 500 m (Fig. S2b), as expected for con-793

vectively driven clouds. The observed RH peaks at 500 m at about 90%. The model and794

reanalyses, however, predicted higher RH between the surface and 500 m under these795

conditions, despite underestimated fog and low clouds (we discuss the reasons for this796

later in this section). ICON and ERA5 show a stronger decrease of RH above this height797

than observations, and ERA5 shows more strongly stable stratification. Unlike the foggy798

and 500-m cloud situations, situations with clouds at 1.5 km do not have a flat θv with799

height. This indicates that, unlike the former, clouds at 1.5 km are not (or not as strongly)800

convectively driven. As expected, RH in these situations peaks at 1.5 km at about 85%801

in observations. In the model and reanalyses, this peak is much less pronounced.802

Fig. 6c shows the histogram of LTS calculated from all radiosonde profiles and the803

corresponding profiles in the model and reanalyses. It can be seen that ICON substan-804

tially underestimates the occurrence of cases of strong stability above 16 K while over-805

estimating the cases of moderate stability (8 to 16 K). When considered together with806

the cloud occurrence results presented in Fig. 7, we see that since ICON is biased towards807

weak stability, it overrepresents cloud profiles strongly peaking at 500 m (Fig. 7g) over808

cloud profiles with fog or very low-level cloud (Fig. 7f). This can be a physical reason809

for its overall positive bias in cloud at 500 m (Fig. 7a) instead of the observed cloud oc-810

currence profile peaking near the surface. The reanalyses simulate the LTS distribution811

well except for a slight underestimation of LTS.812

Fig. 11 shows RH histograms calculated from the radiosonde observations and equiv-813

alent profiles in the model and reanalyses (shown as anomalies relative to the observa-814

tions), calculated for all, clear, and cloudy bins, based on the lidar observations and the815

simulated lidar backscatter in the model and reanalyses. Here, we show only the first816

2 km to concentrate on the identified cloud biases seen at these heights. We can see sev-817

eral notable features. The model and reanalyses predict progressively fewer high-RH (>90%)818

bins above the ground (Fig. 11b–d). This can be related to either ice nucleation happen-819

ing in the model and reanalyses, which requires smaller RH for saturation, or the grid820

cell size in the model and reanalyses, which requires lower grid cell average RH than 100%821

for saturation to occur in a fraction of the grid cell. The model and reanalyses also tend822

to simulate more clear bins than observations for RH between 80 and 100% between the823

ground and about 1 km (Fig. 11f–h). In the observations, these values of RH are asso-824

ciated with cloudy bins (Fig. 11i). Conversely, the model and reanalyses predominantly825

associate only RH very close to 100% with cloudy bins at these heights (Fig. 11j–l). This826

may be one of the main reasons for the identified cloud or fog biases near the ground.827

A possible explanation is that cloud droplets are able to form or persist at RH between828

90 and 100% at these heights over the SO. This could be due to abundant hygroscopic829

nuclei such as sea salt (Zieger et al., 2017; Kong et al., 2018) or droplet generation from830

sea spray in the common high swell and high wind speed conditions over the SO (Revell831

et al., 2019; Hartery et al., 2020). Stratus fractus or other broken clouds could also lead832

to less than 100% RH when averaged over the size of the vertical bins (up to 30 m in some833

of the radiosonde profiles).834

Fig. S3 shows histograms the same as the previous figure, but for θv. They show835

a more complex picture, characterized by a central peak at about 0°C near the surface,836

increasing to about 5°C at 2 km (Fig. S3a). For cloudy bins, the central peak is gener-837

ally more constant with height and even shows a minimum in θv at about 500 m (Fig. S3i).838
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This is indicative of convection being associated with clouds at these heights, which re-839

sults in flat θv profiles. In the reanalyses, in the first 200 m, values slightly above 0°C840

are associated with more clear bins than in observations, and values slightly below 0°C841

with fewer (Fig. S3g–h). Conversely, the opposite is true for cloudy bins (Fig. S3k–l).842

Situations with 0°C near-surface air temperature might occur predominantly when an843

open ocean surface keeps the near-surface air temperature close to 0°C under otherwise844

colder air mass conditions, such as under cold advection. ICON displays a notable bias845

above about 1 km, where the central peak is strongly underestimated (Fig. S3j). Instead,846

these heights and values of θv are more associated with clear bins (Fig. S3f). This might847

be related to the strong underestimation of cloud occurrence at these heights.848

4 Limitations of this Study849

Let us consider the main limitations of the presented results. The spatial cover-850

age of our dataset does not include most parts of the Indian Ocean and Pacific Ocean851

sectors of the SO. Even though climatological features of the SO are typically relatively852

uniform zonally, variations exist, such as those related to the Antarctic Peninsula and853

the southern tip of South America. The voyages were mostly undertaken in the Austral854

summer months and only rarely in the winter months, due to the poor accessibility of855

this region during winter. Therefore, our results are likely representative of summer and,856

to a lesser extent, spring and autumn conditions. Ship access to sea-ice-covered areas857

of the SO is also limited. Cloud regimes and phases in the region are seasonally variable858

(Danker et al., 2022).859

The time period of ICON is relatively short, with only four full years of simulation860

available. Moreover, the simulation is free-running and ocean-coupled, which means that861

observations had to be temporally mapped to this time period (at the same time rela-862

tive to the start of the year) for the comparison. For these reasons, one can expect the863

results to be slightly different due to reasons unrelated to the model and reanalysis bi-864

ases, such as different weather conditions, partially accounted for by the cyclone and sta-865

bility subsetting, and the phase of climate oscillations, such as the ENSO in the obser-866

vations and ICON. The interannual variability in cloud occurrence in ICON can be seen867

in Fig. S1, where each year in ICON is represented by a separate line. As could be ex-868

pected, the interannual variability tends to be substantially smaller than the biases and869

thus is unlikely to have a strong impact on the main findings.870

It would be possible to use short-term ICON simulations for almost one-to-one com-871

parison to observations. However, here we focus on long-term biases, which are statis-872

tically more robust. Our analysis is, therefore, complementary to shorter process-level873

studies. The reanalyses pose the difficulty of determining how much assimilated obser-874

vations impact the results. While one might expect temperature and RH profiles to be875

well represented in the reanalyses due to assimilation of satellite data, we see that this876

is not always the case in comparison with the radiosonde profiles and near-surface me-877

teorological observations. This could be due to the limited vertical accuracy of satellite878

sounding measurements and obscuration by clouds. Despite the assimilation, the cloud879

and radiation biases are often comparable to or greater than in the free-running model.880

Ground-based lidar observations are affected by attenuation by thick cloud layers,881

and for this reason the results are most representative of boundary layer clouds, while882

higher-level clouds are only occasionally visible to the lidar when boundary layer clouds883

are not present. Ground-based lidar observations can be regarded as complementary to884

satellite lidar observations for the evaluation of low-level clouds, which are predominant885

in this region, while mid- and high-level clouds are likely better sampled by satellite ob-886

servations (McErlich et al., 2021). Ground-based observations are, however, complicated887

by precipitation, and satellite observations can also be used if the effect of overlapping888

clouds is carefully eliminated. Lidar retrievals close to the surface (∼100 m) are affected889
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by uncertainties related to incomplete overlap, signal saturation (dead time), and after-890

pulse effect corrections (Kuma et al., 2021).891

Supercooled liquid clouds (liquid clouds under subzero temperature) commonly oc-892

cur over the SO. In our analysis of the LWP and IWP, we see that both phases are abun-893

dant. Because liquid water droplets are typically smaller and more numerous than ice894

crystals in cold clouds, they attenuate a greater amount of the lidar radiation. Clouds895

with a relatively modest optical thickness of 1.7 can attenuate the lidar signal for a de-896

tection at 2 km using an instrument with noise properties like the Vaisala CL31 (Sec-897

tion 2.4). While supercooled liquid clouds and their attenuation are accounted for by the898

lidar simulator, they can strongly attenuate the signal and cause artificially low values899

of cloud occurrence at higher altitudes. For example, we found that cloud occurrence at900

1.5 km is underestimated in ICON and underlying clouds are overestimated. However,901

this can also mean that clouds at 1.5 km are present in the model, but the signal is too902

attenuated by the lower clouds in the model, but not in the observations, where the un-903

derlying clouds are not as pronounced.904

We have attempted to remove lidar profiles with precipitation (about 26% of all905

profiles), which could not be properly simulated with the lidar simulator (Section 2.9).906

However, the approach was limited by the relatively low sensitivity of the ANN (65%)907

and the fact that we had to choose a fixed threshold for surface precipitation flux in the908

model and reanalyses, which might not correspond to detection by the ANN applied to909

observations. We also made no attempt to remove profiles with precipitation that did910

not reach the surface. The above reasons may result in an artificial bias in the compar-911

ison, though we expect this to be much smaller than the identified model and reanal-912

ysis biases.913

Subsetting by cyclonic activity and stability is done based on the ERA5 data. As914

we have shown, the reanalyses also suffer from biases in near-surface and upper-level quan-915

tities. Therefore, the subsetting is limited by the accuracy of the ERA5 pressure field,916

near-surface temperature, and temperature at 700 hPa. Near-surface ship observations917

are affected by the ship structures as well as the variable height above sea level at which918

the measurements are taken. The accuracy of radiosonde measurements in the first tens919

of meters from the surface is also likely affected by the ship environment, such as tur-920

bulence generated by ship structures and the ship exhaust. Vertical averaging of the ra-921

diosonde data can result in lower RH near saturation due to averaging of drier and moister922

layers together. For example, some of the RV Polarstern radiosondes are available in ver-923

tical resolution of about 20–30 m. As mentioned in Section 3.4, the satellite retrieval of924

the LWP and IWP is affected by large biases, especially over high latitudes, which lim-925

its our comparison with the model and reanalyses.926

5 Discussion and Conclusions927

We analyzed a total of about 2400 days of lidar and 2300 radiosonde observations928

from 31 campaigns and the Macquarie Island sub-Antarctic station, covering the Atlantic,929

Australian, and New Zealand sectors of the SO over 10 years. This dataset, together with930

the use of a ground-based lidar simulator, provided a comprehensive basis for evaluat-931

ing SO cloud and thermodynamic profile biases in the GSRM ICON and the ERA5 and932

MERRA-2 reanalyses. Our analysis provides a unique evaluation perspective, comple-933

mentary to satellite observations for evaluating boundary layer clouds and fog, which are934

predominant in this region. We did not, however, analyze the cloud phase based on ground-935

based observations. Cloud phase can have a strong impact on the SW radiative trans-936

fer due to larger and therefore less numerous hydrometeors in cold and mixed-phase clouds937

(for the same amount of water), scattering much less SW radiation. Especially, the un-938

derestimation of fog or very low-level clouds is very substantial in the reanalyses, and939

we showed that this relates to cloud and fog formation or persistence at RH between 80940
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Table 3. Summary of the main biases. Values are relative to observations and rounded to the

nearest multiple of 5, except for daily cloud cover and RH, which are rounded to the nearest

integer. The best-performing value is marked in bold. Abbreviations: boundary layer (BL), rel-

ative humidity (RH), shortwave (SW), longwave (LW), liquid water path (LWP), ice water path

(IWP), and lifting condensation level (LCL).

ICON MERRA-2 ERA5

Total cloud fraction (%) -10 -20 -20
Daily cloud cover (okta) -1 -2 -2
Fog (%) 0 -10 -10
BL clouds (at ∼500 m) 15 0 5
Mid-lev. clouds (at ∼1.5 km) -5 -5 0
RH at 500 m 2 2 0
SW (W m−2) -25 5 -20
LW (W m−2) 5 5 5
LWP (g m−2) 10 20 -15
IWP (g m−2) -30 -30 -15
LCL distribution peak (m) 300 300 300

and 100% in the boundary layer in the observations, while in the model and reanalyses941

RH values less than 100% are associated with clear bins. We subset the dataset by low942

and high latitude SO bands, cyclonic activity, and stability in order to identify how these943

conditions influence the biases. The main identified biases are summarized in Table 3944

and discussed below.945

Our main finding corroborates previous findings of large boundary layer cloud bi-946

ases in the model and reanalyses and their subsequent effect on the radiative transfer.947

For example, low- and mid-level clouds in the cold-air sector of cyclones were identified948

as being responsible for most of the SW bias by Bodas-Salcedo et al. (2012). Precipi-949

tation in intense extratropical oceanic cyclones is projected to increase with future warm-950

ing (Kodama et al., 2019). The understanding of radiation biases was refined by Bodas-951

Salcedo et al. (2014), who highlighted that the SW bias was associated with an incor-952

rectly simulated mid-level cloud regime, which occurred in regions where clouds with tops953

at mid-level and low levels occurred. Ramadoss et al. (2024) have shown that in precip-954

itating conditions, km-scale ICON has SW radiative biases associated with the overrep-955

resentation of the liquid phase at the cloud top in low stratocumulus clouds in a short956

(48-h) simulation over the SO. Fiddes et al. (2024) suggested that biases in the LWP are957

the largest contributor to the cloud radiative bias over the SO. Our general finding ap-958

plies to the new GSRM ICON, but the biases are lower than in the reanalyses in sev-959

eral aspects, namely the total cloud fraction, daily cloud cover, fog, and the LWP (Ta-960

ble 3), despite the reanalyses having the advantage of assimilation of the observed me-961

teorological conditions. ICON, on the other hand, performs worse than the reanalyses962

in clouds and RH at 500 m, mid-level clouds (here defined as 1.5 km), outgoing SW ra-963

diation, and the IWP. ICON has the advantage of a much higher spatial resolution and,964

to a limited extent, explicit calculation of traditionally subgrid-scale processes such as965

convection. These are incomplete due to the lack of sub-grid scale convection parame-966

terization below the km scale. The lack of parameterized subgrid-scale convection in ICON967

was a pragmatic choice in the model development, but it can be a source of substantial968

cloud biases even at the 5-km resolution.969

We show that relative to ERA5, the distribution and strength of cyclonic activity970

over the SO is well represented in ICON, but it displays lower values of LTS. The lat-971

ter is also manifested in the radiosonde profile comparison (Fig. 6c), showing that the972
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θv profiles in ICON are less stable than in the observations. It is also manifested in near-973

surface air temperature, which is overestimated in the 1–7°C range at the radiosonde launch974

locations (Fig. 6a). The underestimated LTS is linked to the overestimated cloud peak975

at 500 m in the lidar cloud occurrence comparison (Fig 7f–g). It might also be interact-976

ing with the cloud inhomogeneity factor employed in ICON (Section 2.5), resulting in977

lower cloud liquid water used in radiative calculations, hence decreased outgoing SW ra-978

diation. Based on the θv profile analysis, clouds at 500 m are predominantly convectively979

driven, and it is therefore expected that a bias towards weak stability results in an in-980

creased cloud formation at this level. The underestimation of clouds above 1 km in ICON981

does not have a clear physical reason in our analysis and is likely partially or fully caused982

by stronger obscuration of the simulated lidar signal by the underlying and overestimated983

clouds in ICON at around 500 m.984

The campaigns show remarkably similar biases in cloud occurrence by height in the985

lidar comparison (Fig. S1), which indicates that common underlying causes for the bi-986

ases exist regardless of longitude and season. ICON underestimates the total cloud frac-987

tion by about 10%, with an overestimation of clouds below 1 km and an underestima-988

tion of clouds above 1 km. The reanalyses underestimate the total cloud fraction by about989

20%. ERA5 overestimates clouds below 1 km but underestimates very low-level clouds990

and fog. ICON strongly overestimates the peak of cloud occurrence at about 500 m. This991

can be explained by the radiosonde comparison, showing that it is too moist at around992

this height (Fig. 10a); has underestimated LTS (Fig. 5 and 6c), permitting shallow con-993

vection to this height; and has underestimated near-surface RH (Fig. 6b), resulting in994

higher LCL (Fig. 7). Similar to our results for mid-level clouds, Cesana et al. (2022) showed995

that CMIP6 models also tend to underestimate cloud occurrence above 2 km over the996

SO, although their analysis in this case was limited to liquid clouds.997

The inability of the model and reanalyses to simulate fog can be linked to various998

biases identified in our analysis. Near-surface RH is too low in the model and reanaly-999

ses (Fig. 6b), potentially due to low moisture flux from the surface and too effective bound-1000

ary layer mixing. Near-surface temperature is also too high in ICON, and it can be ex-1001

pected that fog formation occurs in low near-surface temperature conditions when a warm1002

and moist air mass is cooled by the surface to the saturation point. Fig. S2 shows that1003

fog occurs under highly stratified conditions. The underestimated LTS in ICON (and1004

to a lesser extent in the reanalyses; Fig. 6c) indicates that the model and reanalyses are1005

biased to weaker stability, thus having less favorable conditions for fog formation and1006

persistence. The RH distribution in cloudy bins (Fig. 11) also suggests that in observa-1007

tions, very low-level hydrometeors can occur under lower RH in observations than in the1008

model and reanalyses. This could be due to high availability of cloud condensation nu-1009

clei (CCN) or ice nucleating particles (INPs) or due to hydrometeors and aerosols formed1010

via sea spray under high swell and wind conditions. These parametrizations are likely1011

very uncertain in the model and reanalyses in the SO due to the sparsity of reference data.1012

Kawai et al. (2016) have shown that marine fog has some of the highest concentrations1013

globally over the SO, and SO marine fog has a greater occurrence in winter. They con-1014

clude that marine fog is related to large-scale circulation and warm advection, and this1015

is expected to change in a warming climate.1016

Compared to lidar observations, the daily cloud cover tends to be about 1 okta lower1017

in ICON and 2 oktas lower in the reanalyses. Conditions of weak stability are associated1018

with some of the greatest biases, especially in ERA5. The model and reanalyses also un-1019

derestimate the cloud cover very strongly in cyclonic conditions, which are very cloudy1020

in the observations (8 oktas) but much less so in the model and reanalyses. Similarly,1021

McErlich et al. (2023) found a 40% underestimation of cloud liquid water in cyclones over1022

the SO in ERA5, despite total column water vapor being simulated much more accurately1023

(5% underestimation).1024
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The radiosonde observations indicate that the LCL is too high in ICON and reanal-1025

yses, which is probably responsible for the higher peak of clouds in the model and re-1026

analyses and the lack of very low-level clouds and fog. Notably, ICON exhibits smaller1027

internal variability in θv than the radiosonde observations. The analysis of the LWP and1028

IWP (Fig. 9c–f) shows that both phases are present in observations in about equal amounts.1029

The model and reanalyses show diverse biases, the most pronounced being overestima-1030

tion of high-LWP values in MERRA-2 and overestimation of cases with a near-zero LWP1031

and IWP in the model and reanalyses. The model and reanalyses tend to compensate1032

for the overestimated cases of a near-zero LWP with more high-LWP values to get a mean1033

LWP that is either less (but close) to the observations (ERA5) or higher than the ob-1034

servations (ICON and MERRA-2). The IWP is underestimated in the models and re-1035

analyses. In the case of ICON and MERRA-2, the mean IWP was underestimated and1036

LWP overestimated, indicating that the model and reanalyses produce too much liquid1037

and not enough ice phase. This is in contrast with previous findings of the lack of su-1038

percooled liquid over the SO in other models. If the liquid phase is overestimated rel-1039

ative to the ice phase, one would expect underestimated cloud SW reflectivity due to a1040

larger number of smaller hydrometeors for the same amount of water. Cloudy areas would1041

then appear brighter in the SW spectrum. This can contribute to the too few, too bright1042

bias, i.e., the overestimated brightness of cloudy areas compensates for the lower total1043

cloud fraction. As mentioned in Section 3.4, the LWP and IWP are, however, affected1044

by the high uncertainty of the satellite retrievals.1045

The relationship between cloud biases and radiation has a number of notable fea-1046

tures. MERRA-2 exhibits the too-few-too-bright bias previously identified in models and1047

reanalyses. In our results, this is characterized by overestimated outgoing TOA SW ra-1048

diation, while at the same time total cloud fraction is underestimated based on the ground-1049

based lidar observations. On the other hand, this relationship is not present in ICON1050

or ERA5. ICON predicts smaller outgoing TOA SW radiation and smaller total cloud1051

fraction than observations, and the deficit of outgoing TOA SW radiation is approximately1052

proportional to the deficit of the total cloud fraction. While this might be a welcome fea-1053

ture and an improvement over previous models, it does mean that the outgoing TOA1054

SW radiation is overall underestimated instead of being compensated by a higher cloud1055

albedo. This can, of course, lead to undesirable secondary effects such as overestimated1056

solar heating of the sea surface, among other factors responsible for SO SST biases in1057

climate models (Q. Zhang et al., 2023; Luo et al., 2023; Hyder et al., 2018). In contrast1058

with our results, A. J. Schuddeboom and McDonald (2021) showed that CMIP6 mod-1059

els tend to overestimate a stratocumulus cloud regime over the SO.1060

Our results imply that SO cloud biases are a substantial issue even in the km-scale1061

resolution ICON and the reanalyses. More effort is therefore needed to improve the cloud1062

simulations in this understudied region. We see that while the ICON is superior to the1063

coarser reanalyses in some aspects (Table 3), it is affected by cloud biases large enough1064

to cause important radiative biases. Parts of the GSRM relevant to low clouds, however,1065

do not benefit from the higher resolution, such as cloud microphysics, unresolved clouds1066

smaller than the grid cell, and turbulence. Cloud biases have also been shown to be a1067

persistent issue in other GSRM models (Seiki et al., 2022).1068

We suggest the following avenues for future research. Evaluation of ocean–atmosphere1069

heat, moisture, and momentum fluxes with in-situ observations over the SO and com-1070

parison of GSRM simulations with large-eddy simulations in process-oriented studies;1071

evaluation of the DYAMOND project simulations in a similar manner as performed here1072

(for models that provide the necessary fields); and combining active satellite sensors such1073

as the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIOP)1074

on CALIPSO and Atmospheric Lidar [ATLID; Hélière et al. (2017)] on the Earth Clouds,1075

Aerosols and Radiation Explorer [EarthCARE; Illingworth et al. (2015)] satellite with1076

ground-based remote sensing could provide a more complete understanding of the cloud1077
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biases across the whole troposphere. Cloud phase could be analyzed in more detail us-1078

ing the CALIPSO data, as was done by Roh et al. (2020) in a cloud-resolving model, or1079

using ground-based observations with the dual-polarization Mini Micro Pulse Lidar [Min-1080

iMPL; Spinhirne (1993); Campbell et al. (2002); Flynn et al. (2007)] data available from1081

the TAN1802 voyage. Guyot et al. (2022) and Whitehead et al. (2024) have developed1082

a machine learning method for identifying cloud phase from ceilometer data, and this1083

could be used with our ground-based lidar dataset to analyze the cloud phase. However,1084

their method would require a careful calibration with reference data coming from this1085

region.1086
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Koldunov, N., Kölling, T., Pedruzo-Bagazgoitia, X., Rackow, T., Redler, R.,1408

Sidorenko, D., . . . Ziemen, F. A. (2023). nextGEMS: output of the model1409

development cycle 3 simulations for ICON and IFS. World Data Center for1410

Climate (WDCC) at DKRZ. doi: 10.26050/WDCC/nextGEMS\ cyc31411

Kong, X., Wolf, M. J., Roesch, M., Thomson, E. S., Bartels-Rausch, T., Alpert,1412

P. A., . . . Cziczo, D. J. (2018). A continuous flow diffusion chamber1413

study of sea salt particles acting as cloud nuclei: deliquescence and ice nu-1414

cleation. Tellus B: Chemical and Physical Meteorology , 70 (1), 1–11. doi:1415

10.1080/16000889.2018.14638061416

König-Langlo, G. (2011a). Continuous meteorological surface measurement during1417

POLARSTERN cruise ANT-XXVII/2 [Dataset]. PANGAEA. doi: 10.1594/1418

PANGAEA.7603881419

König-Langlo, G. (2011b). Continuous meteorological surface measurement during1420

POLARSTERN cruise ANT-XXVII/3 [Dataset]. PANGAEA. doi: 10.1594/1421

PANGAEA.7603891422

König-Langlo, G. (2011c). Meteorological observations during POLARSTERN cruise1423

ANT-XXVII/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.7603921424

König-Langlo, G. (2011d). Meteorological observations during POLARSTERN cruise1425

ANT-XXVII/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.7603931426

König-Langlo, G. (2011e). Upper air soundings during POLARSTERN cruise ANT-1427

XXVII/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8490451428

König-Langlo, G. (2012a). Continuous meteorological surface measurement during1429

POLARSTERN cruise ANT-XXVIII/2 [Dataset]. PANGAEA. doi: 10.1594/1430

PANGAEA.7844531431

König-Langlo, G. (2012b). Continuous meteorological surface measurement during1432

POLARSTERN cruise ANT-XXVIII/3 [Dataset]. PANGAEA. doi: 10.1594/1433

PANGAEA.7844541434

König-Langlo, G. (2012c). Continuous meteorological surface measurement during1435

POLARSTERN cruise ANT-XXVIII/4 [Dataset]. PANGAEA. doi: 10.1594/1436

PANGAEA.7844551437

König-Langlo, G. (2012d). Meteorological observations during POLARSTERN cruise1438

ANT-XXVIII/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.7844581439

König-Langlo, G. (2012e). Meteorological observations during POLARSTERN cruise1440

ANT-XXVIII/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.7844591441

König-Langlo, G. (2012f). Meteorological observations during POLARSTERN cruise1442

ANT-XXVIII/4 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.7844601443

König-Langlo, G. (2012g). Upper air soundings during POLARSTERN cruise ANT-1444

XXVII/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8490441445

König-Langlo, G. (2012h). Upper air soundings during POLARSTERN cruise ANT-1446

XXVIII/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448661447

König-Langlo, G. (2012i). Upper air soundings during POLARSTERN cruise ANT-1448

XXVIII/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448651449

König-Langlo, G. (2012j). Upper air soundings during POLARSTERN cruise ANT-1450

XXVIII/4 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448591451

König-Langlo, G. (2013a). Continuous meteorological surface measurement during1452

POLARSTERN cruise ANT-XXIX/2 [Dataset]. PANGAEA. doi: 10.1594/1453

–39–



manuscript submitted to JGR: Atmospheres

PANGAEA.8154721454

König-Langlo, G. (2013b). Continuous meteorological surface measurement during1455

POLARSTERN cruise ANT-XXIX/3 [Dataset]. PANGAEA. doi: 10.1594/1456

PANGAEA.8154731457

König-Langlo, G. (2013c). Continuous meteorological surface measurement during1458

POLARSTERN cruise ANT-XXIX/4 [Dataset]. PANGAEA. doi: 10.1594/1459

PANGAEA.8157231460

König-Langlo, G. (2013d). Continuous meteorological surface measurement during1461

POLARSTERN cruise ANT-XXIX/5 [Dataset]. PANGAEA. doi: 10.1594/1462

PANGAEA.8154741463

König-Langlo, G. (2013e). Continuous meteorological surface measurement during1464

POLARSTERN cruise ANT-XXIX/6 [Dataset]. PANGAEA. doi: 10.1594/1465

PANGAEA.8207331466

König-Langlo, G. (2013f). Meteorological observations during POLARSTERN cruise1467

ANT-XXIX/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8154761468

König-Langlo, G. (2013g). Meteorological observations during POLARSTERN cruise1469

ANT-XXIX/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8154771470

König-Langlo, G. (2013h). Meteorological observations during POLARSTERN cruise1471

ANT-XXIX/4 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8157241472

König-Langlo, G. (2013i). Meteorological observations during POLARSTERN cruise1473

ANT-XXIX/5 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8154781474

König-Langlo, G. (2013j). Meteorological observations during POLARSTERN cruise1475

ANT-XXIX/6 (AWECS) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA1476

.8196101477

König-Langlo, G. (2013k). Meteorological observations during POLARSTERN cruise1478

ANT-XXIX/7 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8208431479

König-Langlo, G. (2013l). Upper air soundings during POLARSTERN cruise ANT-1480

XXIX/2 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448561481

König-Langlo, G. (2013m). Upper air soundings during POLARSTERN cruise1482

ANT-XXIX/3 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448551483

König-Langlo, G. (2013n). Upper air soundings during POLARSTERN cruise ANT-1484

XXIX/4 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448541485

König-Langlo, G. (2013o). Upper air soundings during POLARSTERN cruise ANT-1486

XXIX/5 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448531487

König-Langlo, G. (2013p). Upper air soundings during POLARSTERN cruise ANT-1488

XXIX/6 (AWECS) to the Antarctic in 2013 [Dataset]. PANGAEA. doi: 101489

.1594/PANGAEA.8428101490

König-Langlo, G. (2013q). Upper air soundings during POLARSTERN cruise ANT-1491

XXIX/7 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448521492

König-Langlo, G. (2013r). Upper air soundings during POLARSTERN cruise ANT-1493

XXIX/8 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448091494

König-Langlo, G. (2014a). Ceilometer CL51 raw data measured during PO-1495

LARSTERN cruise ANT-XXIX/2, links to files [Dataset]. PANGAEA. doi:1496

10.1594/PANGAEA.8345261497

König-Langlo, G. (2014b). Ceilometer CL51 raw data measured during PO-1498

LARSTERN cruise ANT-XXIX/3, links to files [Dataset]. PANGAEA. doi:1499

10.1594/PANGAEA.8345271500

König-Langlo, G. (2014c). Ceilometer CL51 raw data measured during PO-1501

LARSTERN cruise ANT-XXIX/4, links to files [Dataset]. PANGAEA. doi:1502

10.1594/PANGAEA.8345281503

König-Langlo, G. (2014d). Ceilometer CL51 raw data measured during PO-1504

LARSTERN cruise ANT-XXIX/5, links to files [Dataset]. PANGAEA. doi:1505

10.1594/PANGAEA.8345291506

König-Langlo, G. (2014e). Ceilometer CL51 raw data measured during PO-1507

LARSTERN cruise ANT-XXIX/6 (AWECS), links to files [Dataset]. PAN-1508

–40–



manuscript submitted to JGR: Atmospheres

GAEA. doi: 10.1594/PANGAEA.8338011509

König-Langlo, G. (2014f). Ceilometer CL51 raw data measured during PO-1510

LARSTERN cruise ANT-XXIX/7, links to files [Dataset]. PANGAEA. doi:1511

10.1594/PANGAEA.8338021512

König-Langlo, G. (2014g). Ceilometer CL51 raw data measured during PO-1513

LARSTERN cruise ANT-XXIX/8, links to files [Dataset]. PANGAEA. doi:1514

10.1594/PANGAEA.8345301515

König-Langlo, G. (2014h). Ceilometer CL51 raw data measured during PO-1516

LARSTERN cruise ANT-XXVII/2, links to files [Dataset]. PANGAEA.1517

doi: 10.1594/PANGAEA.8345111518

König-Langlo, G. (2014i). Ceilometer CL51 raw data measured during PO-1519

LARSTERN cruise ANT-XXVII/3, links to files [Dataset]. PANGAEA.1520

doi: 10.1594/PANGAEA.8345121521

König-Langlo, G. (2014j). Ceilometer CL51 raw data measured during PO-1522

LARSTERN cruise ANT-XXVIII/2, links to files [Dataset]. PANGAEA.1523

doi: 10.1594/PANGAEA.8345181524

König-Langlo, G. (2014k). Ceilometer CL51 raw data measured during PO-1525

LARSTERN cruise ANT-XXVIII/3, links to files [Dataset]. PANGAEA.1526

doi: 10.1594/PANGAEA.8345191527

König-Langlo, G. (2014l). Ceilometer CL51 raw data measured during PO-1528

LARSTERN cruise ANT-XXVIII/4, links to files [Dataset]. PANGAEA.1529

doi: 10.1594/PANGAEA.8345201530

König-Langlo, G. (2014m). Ceilometer CL51 raw data measured during PO-1531

LARSTERN cruise PS82 (ANT-XXIX/9), links to files [Dataset]. PANGAEA.1532

doi: 10.1594/PANGAEA.8345311533

König-Langlo, G. (2014n). Continuous meteorological surface measurement during1534

POLARSTERN cruise ANT-XXIX/8 [Dataset]. PANGAEA. doi: 10.1594/1535

PANGAEA.8326021536

König-Langlo, G. (2014o). Continuous meteorological surface measurement during1537

POLARSTERN cruise PS82 (ANT-XXIX/9) [Dataset]. PANGAEA. doi: 101538

.1594/PANGAEA.8326031539

König-Langlo, G. (2014p). Meteorological observations during POLARSTERN cruise1540

ANT-XXIX/8 [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8326051541

König-Langlo, G. (2014q). Meteorological observations during POLARSTERN1542

cruise PS82 (ANT-XXIX/9) [Dataset]. PANGAEA. doi: 10.1594/1543

PANGAEA.8326061544

König-Langlo, G. (2014r). Upper air soundings during POLARSTERN cruise PS821545

(ANT-XXIX/9) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8448051546

König-Langlo, G. (2015a). Ceilometer CL51 raw data measured during PO-1547

LARSTERN cruise PS89, links to files [Dataset]. PANGAEA. doi:1548

10.1594/PANGAEA.8440751549

König-Langlo, G. (2015b). Continuous meteorological surface measurement during1550

POLARSTERN cruise PS89 (ANT-XXX/2) [Dataset]. PANGAEA. doi: 101551

.1594/PANGAEA.8495021552

König-Langlo, G. (2015c). Meteorological observations during POLARSTERN cruise1553

PS89 (ANT-XXX/2) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8445711554

König-Langlo, G. (2015d). Upper air soundings during POLARSTERN cruise PS891555

(ANT-XXX/2) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8447911556

König-Langlo, G. (2016a). Ceilometer CL51 raw data measured during PO-1557

LARSTERN cruise PS96, links to files [Dataset]. PANGAEA. doi:1558

10.1594/PANGAEA.8605161559

König-Langlo, G. (2016b). Ceilometer CL51 raw data measured during PO-1560

LARSTERN cruise PS97, links to files [Dataset]. PANGAEA. doi:1561

10.1594/PANGAEA.8605171562

König-Langlo, G. (2016c). Continuous meteorological surface measurement during1563

–41–



manuscript submitted to JGR: Atmospheres

POLARSTERN cruise ANT-XXIX/7 [Dataset]. PANGAEA. doi: 10.1594/1564

PANGAEA.8585321565

König-Langlo, G. (2016d). Continuous meteorological surface measurement during1566

POLARSTERN cruise PS96 (ANT-XXXI/2 FROSN) [Dataset]. PANGAEA.1567

doi: 10.1594/PANGAEA.8614411568

König-Langlo, G. (2016e). Continuous meteorological surface measurement during1569

POLARSTERN cruise PS97 (ANT-XXXI/3) [Dataset]. PANGAEA. doi: 101570

.1594/PANGAEA.8614421571

König-Langlo, G. (2016f). Meteorological observations during POLARSTERN1572

cruise PS96 (ANT-XXXI/2 FROSN) [Dataset]. PANGAEA. doi:1573

10.1594/PANGAEA.8614381574

König-Langlo, G. (2016g). Meteorological observations during POLARSTERN1575

cruise PS97 (ANT-XXXI/3) [Dataset]. PANGAEA. doi: 10.1594/1576

PANGAEA.8614391577

König-Langlo, G. (2016h). Upper air soundings during POLARSTERN cruise PS961578

(ANT-XXXI/2 FROSN) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA1579

.8616581580

König-Langlo, G. (2016i). Upper air soundings during POLARSTERN cruise PS971581

(ANT-XXXI/3) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8616591582

König-Langlo, G. (2017a). Ceilometer CL51 raw data measured during PO-1583

LARSTERN cruise PS103, links to files [Dataset]. PANGAEA. doi:1584

10.1594/PANGAEA.8717221585

König-Langlo, G. (2017b). Ceilometer CL51 raw data measured during PO-1586

LARSTERN cruise PS104, links to files [Dataset]. PANGAEA. doi:1587

10.1594/PANGAEA.8741541588

König-Langlo, G. (2017c). Continuous meteorological surface measurement during1589

POLARSTERN cruise PS103 (ANT-XXXII/2) [Dataset]. PANGAEA. doi: 101590

.1594/PANGAEA.8730161591

König-Langlo, G. (2017d). Meteorological observations during POLARSTERN cruise1592

PS103 (ANT-XXXII/2) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA1593

.8717211594

König-Langlo, G. (2017e). Meteorological observations during POLARSTERN cruise1595

PS104 (ANT-XXXII/3) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA1596

.8741561597

König-Langlo, G. (2017f). Upper air soundings during POLARSTERN cruise PS1031598

(ANT-XXXII/2) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8717881599

König-Langlo, G. (2017g). Upper air soundings during POLARSTERN cruise PS1041600

(ANT-XXXII/3) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA.8742241601

Konsta, D., Dufresne, J.-L., Chepfer, H., Vial, J., Koshiro, T., Kawai, H., . . . Ogura,1602

T. (2022). Low-level marine tropical clouds in six CMIP6 models are too few,1603

too bright but also too compact and too homogeneous. Geophysical Research1604

Letters, 49 (11), e2021GL097593. doi: 10.1029/2021GL0975931605

Konstali, K., Spengler, T., Spensberger, C., & Sorteberg, A. (2024). Linking future1606

precipitation changes to weather features in CESM2-LE. Journal of Geophys-1607

ical Research: Atmospheres, 129 (16), e2024JD041190. doi: https://doi.org/101608

.1029/2024JD0411901609
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Schmithüsen, H. (2019b). Radiosonde measurements during POLARSTERN cruise1813

PS112 (ANT-XXXIII/3) [Dataset]. PANGAEA. doi: 10.1594/PANGAEA1814

.9038631815
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