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Abstract17

This study compares CL51 ceilometer observations made at Scott Base, Antarctica, with18

statistics from the ERA5, JRA55, and MERRA2 reanalyses. To enhance the compar-19

ison we use a lidar instrument simulator to derive cloud statistics from the reanalyses20

which account for instrumental factors. The cloud occurrence in the three reanalyses is21

slightly overestimated above 3km, but displays a larger underestimation below 3 km rel-22

ative to observations. Unlike previous studies, we see no relationship between relative23

humidity and cloud occurrence biases, suggesting that the cloud biases do not result from24

the representation of moisture. We also show that the seasonal variation of cloud occur-25

rence and cloud fraction, defined as the vertically integrated cloud occurrence, are small26

in both the observations and the reanalyses. We also examine the quality of the cloud27

representation for a set of synoptic states derived from ERA5 surface winds. The vari-28

ability associated with grouping cloud occurrence based on synoptic state is much larger29

than the seasonal variation, highlighting synoptic state is a strong control of cloud oc-30

currence. All the reanalyses continue to display underestimates below 3km and overes-31

timates above 3km for each synoptic state. But, the variability in ERA5 statistics matches32

the changes in the observations better than the other reanalyses. We also use a machine33

learning scheme to estimate the quantity of super-cooled liquid water cloud from the ceilome-34

ter observations. Ceilometer low-level super-cooled liquid water cloud occurrences are35

considerably larger than values derived from the reanalyses, further highlighting the poor36

representation of low-level clouds in the reanalyses.37

Plain Language Summary38

This study compares cloud observations from a CL51 ceilometer at Scott Base, Antarc-39

tica, with data from three weather reanalyses: ERA5, JRA55, and MERRA2. We used40

a lidar simulator to better match the reanalyses data with the ceilometer’s measurements.41

The reanalyses slightly overestimate cloud presence above 3 km but significantly under-42

estimate it below 3 km compared to the ceilometer data. Both the observations and re-43

analyses show only small seasonal changes in cloud presence. However, grouping the data44

by weather patterns shows that these patterns strongly influence cloud presence. The45

reanalyses still underestimated cloud presence below 3 km and overestimated it above46

3 km for all weather patterns, but ERA5 data matched the observed changes better than47

the other reanalyses. We also used machine learning to estimate the amount of super-48

cooled liquid water clouds from the ceilometer data. The ceilometer detected many more49

low-level super-cooled liquid water clouds than the reanalyses simulations, highlighting50

that issues with the representation of low-level clouds in these models are widespread.51

1 Introduction52

Clouds are fundamental to the Earth’s energy balance, influencing surface temper-53

ature by reflecting solar radiation, trapping and emitting infrared radiation. But, com-54

parisons between observations and simulations reveal significant biases in the represen-55

tation of clouds. In particular, large biases were identified over high latitudes in the Cou-56

pled Model Intercomparison Project phase 3 (CMIP3) models (Trenberth & Fasullo, 2010).57

Subsequent work has made improvements in the simulation of clouds and their proper-58

ties, but biases are still large and can contain compensating errors which can hide bi-59

ases (Schuddeboom & McDonald, 2021; Kuma et al., 2023). Identifying biases’ sources60

is crucial, with previous studies identifying that both insufficient cloud cover and prob-61

lems with the quantity of super-cooled water clouds simulated contribute to biases. The62

latter issue is a problem because liquid water cloud reflects more shortwave radiation than63

ice clouds containing the same amount of water (Vergara-Temprado et al., 2018). In par-64

ticular, models often struggle to simulate super-cooled liquid water clouds accurately lead-65

ing to significant shortwave radiation biases (Bodas-Salcedo et al., 2016; Kay et al., 2016;66
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Kuma et al., 2020). Unfortunately, these clouds which occur between the 0◦C isotherm67

and -38◦C isotherm, used to represent the homogeneous freezing level, are very common68

over the Southern Hemisphere (Hogan et al., 2004), the Southern Ocean (Bodas-Salcedo69

et al., 2016; Kuma et al., 2020) and Antarctica (Listowski et al., 2019). For example, Listowski70

et al. (2019) identified that the fraction of super-cooled liquid-water containing cloud (SLCC)71

was of the order of 0–35% over the Antarctic continent. These issues are important be-72

cause Zelinka et al. (2020) highlighted that changes in the global Effective Climate Sen-73

sitivity (ECS) between CMIP phase 5 and 6 models could largely be attributed to changes74

in the representation of extra-tropical Southern hemisphere clouds.75

Observational data on cloud properties at Southern high latitude sites is thus an76

important constraint on ECS and the representation of clouds. Satellite observations of-77

fer the most spatially complete constraints for models and also often provide the longest78

records above the Southern Ocean and Antarctica. They also have a relatively long his-79

tory of usage as detailed in Lachlan-Cope (2010) and Bromwich et al. (2012). Satellite80

data has provided valuable insights on cloud cover, cloud phase, seasonality and the ver-81

tical distribution of clouds across the Antarctic continent (Verlinden et al., 2011; Bromwich82

et al., 2012; Adhikari et al., 2012). However, they do have a number of limitations. In83

particular, passive satellite sensors face challenges in cloud identification due to the sim-84

ilarity of the properties of snow- and ice-covered ground to low-level cloud (Frey et al.,85

2008). Additionally, low-level cloud layers and cloud base height observations by satel-86

lite instruments are severely limited by the presence of an almost continuous cloud cover87

in the Southern Ocean which acts to obscure these clouds. Additionally, passive satel-88

lite datasets, such as the Moderate Resolution Imaging Spectroradiometer (MODIS; (Platnick89

et al., 2003)) dataset and the data used in the International Satellite Cloud Climatol-90

ogy Project (ISCCP; (Rossow & Schiffer, 1999)) generally only observe radiation scat-91

tered or emitted from cloud top of optically thick clouds. Therefore, these satellites are92

not suitable for resolving the full vertical profile of clouds in some cases.93

These issues are partially mitigated by active satellite instruments, such as the Cloud-94

Sat Cloud Profiling Radar (CPR) (Stephens et al., 2008) and the Cloud-Aerosol Lidar95

with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and In-96

frared Pathfinder Satellite Observations (CALIPSO) satellite (Winker et al., 2009). But,97

even these instruments have limitations. For example, the CPR is affected by ground98

clutter below 1.2 km (Marchand et al., 2008) while the CALIOP lidar signal is atten-99

uated by optically thick cloud. Given the high occurrence of low-level cloud in the South-100

ern Ocean (Haynes et al., 2011), this factor has been studied to examine the level of under-101

estimation (Alexander & Protat, 2018; McErlich et al., 2021). McErlich et al. (2021) com-102

pared two sets of satellite derived cloud products, developed from a combination of CPR103

and CALIOP data, against ground-based observations made at McMurdo station, Antarc-104

tica, collected during the Atmospheric Radiation Measurement (ARM) West Antarctic105

Radiation Experiment (AWARE) campaign (Lubin et al., 2020). They highlighted that106

active satellite sensors underestimate low-level cloud relative to surface observations.107

In particular, McErlich et al. (2021) showed that both the 2B-CLDCLASS-LIDAR108

R05 (2BCL5) (Sassen et al., 2008) and raDAR/liDAR (DARDAR) (Delanoe & Hogan,109

2010) data products underestimate cloud occurrence below 1.5 km relative to surface ob-110

servations, with both products distinguishing roughly one third of co-located cloud oc-111

currences observed by AWARE at 0.5 km. Over the Arctic and Antarctic, Silber et al.112

(2021) also found that differences in instrument sensitivity and detection algorithms can113

reduce spaceborne estimates of cloud and surface precipitation occurrence frequency by114

more than 50% relative to surface measurements. More widely, Liu et al. (2016) iden-115

tified that the CPR experiences contamination in the lowest 1 km due to ground clut-116

ter that hinders detection of low marine clouds, inducing an underestimation of up to117

39% over the oceans. Other parameters are also known to be affected by signal atten-118

uation due to low-level clouds and ground clutter, for example biases exist in satellite-119
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based observations of radiation (Pei et al., 2023) when compared to Southern Ocean sur-120

face observations.121

Surface and airborne observations over Antarctica and the Southern Ocean are thus122

of high value and provide a complement to satellite observations. But, observational cam-123

paigns in the Southern Ocean (Kremser et al., 2021; McFarquhar et al., 2021; Sellegri124

et al., 2023) and around Antarctica (Scott & Lubin, 2014, 2016; Lubin et al., 2020) are125

challenging, costly, and therefore rare (Lachlan-Cope, 2010). Surface observations of all126

types also have their own limitations. For example, the lidar signal from surface obser-127

vations can be attenuated by optically thick low-level cloud which means that the oc-128

currence of high level clouds will be underestimated relative to satellite observations (McErlich129

et al., 2021). This can also influence integrated quantities, such as cloud fraction, with130

Listowski et al. (2019) identifying that ceilometer observations of cloud fraction were sig-131

nificantly lower than corresponding values from the DARDAR product over Antarctica.132

This study compares cloud data from a Vaisala Cl51 ceilometer at Scott Base, Antarc-133

tica, with sets of data from three reanalyses after the application of an instrument sim-134

ulator (Kuma et al., 2021). By simulating cloud properties which account for instrumen-135

tal sensitivies, instrument simulators allow a direct quantitative comparison of cloud prop-136

erties across diverse numerical models with observations which allows a like for like com-137

parison. The use of instrument simulators alleviates some of the issues detailed in Silber138

et al. (2021). This analysis complements previous work in the region which has directly139

compared model output with observations. For example, a comparative analysis between140

observational data from McMurdo Station, Antarctica, and the Community Atmosphere141

Model version 6 (CAM6) simulations was detailed in Yip et al. (2021). They found that142

the CAM6 simulation consistently overestimates (underestimates) cloud occurrence above143

(below) 3 km in every season of the year. However, the effect of instrument sensitives144

was not considered in that work. Previous work detailed in Kuma et al. (2020) compared145

ceilometer observations against nudged output from the Global Atmosphere (GA) ver-146

sion 7.1 of the HadGEM3 GCM and MERRA2 reanalysis output processed using an in-147

strument simulator over the Southern Ocean collected across a set of 5 voyages and high-148

lighted the value of using instrument simulators. Notably they found that both the GA7.1149

and MERRA2 underestimate low cloud and fog occurrence relative to the ship obser-150

vations by 4–9% for GA7.1 and 18% for MERRA2.151

2 Data and Methodology152

Observations from a Vaisala CL51 ceilometer operating at a wavelength of 910 nm153

(near infrared) deployed at Scott Base (77.8◦S, 166.7◦E) between February 2022 and De-154

cember 2023 are used in this study. This wavelength is characterised by relatively low155

molecular backscattering, but is affected by water vapour absorption (Wiegner & Gasteiger,156

2015). The maximum range of the instrument is 15.4 km, with a sampling rate of 6 s157

and a vertical resolution of 25 m. This instrument produces data files containing uncal-158

ibrated attenuated volume backscatter coefficients which are converted to NetCDF us-159

ing the cl2nc software. These NetCDF files are then processed with the Automatic Li-160

dar Ceilometer Framework software (Kuma et al., 2021) detailed in Section 2.1.161

The present study uses outputs from three reanalyses, ECMWF Reanalysis 5 (ERA5)162

(Hersbach et al., 2020), Japanese 55-year Reanalysis (JRA55) (Kobayashi et al., 2015)163

and Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2)164

(Gelaro et al., 2017). ERA5 is the fifth-generation ECMWF reanalysis model (Hersbach165

et al., 2020). The cloud and large-scale precipitation processes are described in ERA5166

by prognostic equations for cloud water and ice, rain, snow, and cloud fraction. The model167

considers various sources and sinks of all cloud variables, and provides better physical168

representation of super-cooled liquid water and mixed-phase clouds relative to ERA-Interim.169
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We also use the Japanese 55-year Reanalysis (JRA55), this reanalysis extends for170

a 55 year period starting from 1958, when regular radiosonde observations became op-171

erational globally. Details about JRA55 are detailed in Kobayashi et al. (2015). This study172

also uses data from the Modern-Era Retrospective analysis for Research and Applica-173

tions (MERRA2) reanalysis (Gelaro et al., 2017). We used the 3-hourly instantaneous174

assimilated meteorological fields (inst3 3d asm Nv (M2I3NVASM)), to generate simu-175

lated ceilometer profiles using ALCF. The four-dimensional MERRA2 fields were pro-176

vided on pressure and model levels. The analysed time period of all three reanalyses datasets177

was between 14th February 2022 and 31st December 2023 unless otherwise stated.178

We also used data from the Antarctic Mesoscale Prediction System (AMPS), which179

is an operational forecasting system which uses a version of the Weather Research and180

Forecasting (WRF) model modified for polar regions (Powers et al., 2012). This study181

examines forecast output from the Polar WRF version 24 documented online and exam-182

ines output from AMPS Domain 3.183

That domain covers a 1802 × 2766 km area at 2.67 km horizontal resolution and184

spans the Ross Sea, the Ross Ice Shelf, and the South Pole. AMPS archive data only in-185

cludes 17 vertical levels with forecasts issued at midday and midnight UTC. Hourly fore-186

casts are utilised in this study. For reference, AMPS obtains initial and boundary con-187

ditions from NCEP GFS model output. While near-real-time ice and snow extent (NISE)188

data provide input sea ice concentration (SIC) values (Brodzik & Stewart., 2016). Un-189

fortunately, the polar WRF model configuration used in the AMPS operational system190

is changed as improvements become available and these changes are not logged. The Po-191

lar WRF output available from the AMPS operational system is therefore not a strong192

focus of this study.193

Instead, we focus on examining the cloud representation in the three reanalyses avail-194

able. An intercomparison of the wind field for each of these reanalyses over the Ross Ice195

Shelf region is detailed in McDonald and Cairns (2020) and highlighted that these prod-196

ucts were broadly consistent with each other during the satellite period. However, to our197

knowledge no study examining the quality of multiple reanalyses cloud representation198

has occurred over Antarctica. The present study aims to fill this gap by comparing re-199

analyses output with ceilometer data. Ceilometers can provide valuable information on200

cloud and aerosols, but have not been widely used in the evaluation of climate models,201

reanalyses and numerical weather prediction models. This is partially related to the wide202

range of ceilometer instruments, a lack of standardised calibration and the difficulty in203

directly comparing observations with model outputs. The ALCF software allows the cal-204

ibration of ceilometer data and the application of its instrument simulator to model out-205

puts removes much of this uncertainty.206

2.1 ALCF207

This study uses the Automatic Lidar and Ceilometer Framework (ALCF) tool which208

was first used in Kuma et al. (2020) and was subsequently described in more detail in209

Kuma et al. (2021). ALCF provides a framework for converting ceilometer data from dif-210

ferent manufacturers into a common format, calibrates the backscatter data, resamples211

data, and also completes a noise removal and cloud detection process.212

ALCF also includes a ground-based lidar simulator, which calculates the radiative213

transfer of laser radiation and allows one-to-one comparison between models and obser-214

vations. The ALCF ground-based lidar simulator is a development of the CFMIP Ob-215

servation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), a set of instrument216

simulators developed by the Cloud Feedback Model Intercomparison Project (CFMIP).217

COSP was originally developed as a satellite simulator package whose aim is to produce218

virtual satellite (and more recently ground-based) observations from atmospheric model219

fields in order to improve comparisons of model output with observations (Bodas-Salcedo220
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et al., 2011). This approach is required because physical quantities derived from satel-221

lite observations generally do not directly correspond to model fields. ALCF developed222

a ground-based lidar simulator by modifying the COSP Active Remote Sensing Simu-223

lator (Chiriaco et al., 2006). This extension produces virtual backscatter measurements224

from model fields. Resampling, noise reduction and cloud detection were also performed225

on observational and derived model lidar output in a consistent way to reduce structural226

uncertainty. We used the ALCF software to create calibration coefficients for the CL51227

ceilometer using the methodology detailed in O’Connor et al. (2004) rather than using228

the default CL51 calibration available within the package. ALCF developments required229

reversing the vertical layers, as the surface lidar looks from the surface up rather than230

down from space to the surface, and changing the radiation wavelength affecting Mie scat-231

tering by cloud droplets and Rayleigh scattering by air molecules. We only present a brief232

description of the surface lidar simulator and instead encourage interested readers to ex-233

amine Kuma et al. (2021).234

The recently introduced COSP version 2 (Swales et al., 2018) added support for235

a surface lidar simulator, although we believe that ALCF, developed before COSPv2 was236

available, is more complete in the present context due to its treatment of Mie scatter-237

ing at wavelengths other than 532 nm (the wavelength of the CALIOP lidar). It also adds238

a more detailed simulation of ice crystal optical properties. The surface lidar simulator239

takes model cloud liquid and ice mixing ratios, cloud fraction and thermodynamic pro-240

files as the input, and calculates vertical profiles of attenuated backscatter.241

2.2 Super-cooled cloud detection242

Guyot et al. (2022) developed an algorithm to detect super-cooled liquid water con-243

taining clouds (SLCC) based on the co-polarization backscatter measured by ceilome-244

ters using observations from a training dataset collected at Davis station, Antarctica.245

This classification model used an extreme gradient boosting (XGBoost) framework in-246

gesting backscatter data with an accuracy as high as 0.91. More recently the same frame-247

work has also been applied with modifications over mid-latitudes by Whitehead et al.248

(2023), the modifications being necessary because regions which also include warm liq-249

uid cloud impact the accuracy of the Guyot et al. (2022) scheme outside the polar en-250

vironment. This study applies the Guyot et al. (2022) classification scheme to ceilome-251

ter backscatter measurements made at Scott Base. We note that a validation of the Guyot252

et al. (2022) scheme is not possible without reference data. But, visual inspection ini-253

tially identified poor classification results when the Guyot et al. (2022) scheme was ap-254

plied to Scott Base data using the default ALCF calibration coefficient for a CL51 ceilome-255

ter. However, after using the O’Connor et al. (2004) methodology to calibrate the ceilome-256

ter the scheme worked well based on visual inspection, with perhaps some periods where257

SLCC is under reported. We thus detail the results of the application of the Guyot et258

al. (2022) classification scheme to the CL51 backscatter data in this paper.259

2.3 Synoptic typing260

Jolly et al. (2018) has suggested that cloud occurrence over the Ross Ice Shelf is261

strongly impacted by synoptic state and this variation is significantly larger than the ob-262

served seasonal cycle. We therefore create a set of synoptic states using a similar method-263

ology to that used in McDonald and Cairns (2020). In particular, our synoptic types are264

derived using the Self-Organizing Map (SOM) technique applied to ERA5 10m wind speeds265

between 1979 and 2023 to derive representative surface wind patterns.266

SOMs are an iterative unsupervised learning scheme commonly used in clustering267

(Kohonen, 1990). The learning process adjusts a set of reference vectors based on the268

differences between the reference vector and each input record. A learning rate deter-269

mines how the adjustment is related to the difference between the reference vector and270
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the input data measured by the Euclidean distance metric. Training then entails adjust-271

ing reference vectors iterativly until a set of stable values are reached. The learning rate272

and width of the kernel are reduced as a function of time such that the SOM evolves rapidly273

initially. The Euclidean distance is used to identify reference vectors within a certain range274

of the best matching vector. The vectors that fall within this neighborhood are then up-275

dated which produces the coherent organization of output. During each iteration, the276

reference vector that best matches the input record is identified and then modified to277

better reflect the input data. The training process ultimately produces reference vectors278

that represent the multidimensional input space.279

Rather than apply the SOM technique directly to all the ERA5 output, we reduce280

the quantity of input into the SOM by applying an Empirical Orthogonal Function anal-281

ysis to the space-time cube of the surface winds (both zonal and meridional winds) and282

then apply the SOM technique to the largest Principal Components (PCs) only. In this283

study, we truncated the set of PCs when the explained variance was 90% of the total vari-284

ance of the dataset. In this study, we used the implementation of the SOM methodol-285

ogy available in the mini-SOM python package (Vettigli, 2018).286

The usage of the Empirical Orthogonal Functions (EOF) analysis requires anoma-287

lies as inputs and the climatological mean from each latitude/longitude point for the 1979–2023288

reference period was used to derive anomalies. Our analysis focuses on the geographic289

domain (60–90◦S, 140–220◦E) used previously in McDonald and Cairns (2020). We also290

derived a daily average to reduce the processing requirements for the study. Previous291

work detailed in Tastula et al. (2013) identified that near-surface wind speed displays292

low diurnal variability in both observations and in reanalyses products over Antarctica293

and thus our choice to use daily averages should not impact our results.294

3 Results295

Figure 1 displays the mean cloud occurrence as a function of altitude derived from296

the CL51 ceilometer observations, and predictions of cloud occurrence derived with the297

ALCF surface lidar simulator from input from Polar WRF, ERA5, JRA55 and MERRA2298

models. These mean values are derived for the period 14th February 2022 to 31st De-299

cember 2023 where both ceilometer and model outputs are available. The maximum in300

cloud occurrence for the CL51 observations peaks at the surface, but this peak is poten-301

tially contaminated by low-level fog and wind blown snow trappped below the commonly302

observed low-level inversion layer (Hofer et al., 2021). The backscatter near the surface303

is also more uncertain because of the overlap function used. Thus, the secondary peak304

with a value of just over 25% cloud occurrence at approximately 800m above the sur-305

face is likely the true maxima observed by this system. These values of cloud occurrence306

at this peak are roughly 10% lower than previous surface observations from McMurdo307

station detailed in Silber et al. (2018). Though, the general form of the vertical profile308

of cloud occurrence is very similar. The difference may be partially connected to the greater309

attenuation of the ceilometer signal due to obscuring optically thick clouds compared to310

those detailed in Silber et al. (2018) which used a more powerful lidar instrument and311

also included information from a Ka-Band cloud radar. The High Spectral Resolution312

Lidar (HSRL) is also more sensitive to tenuous cloud. Additionally, the variability from313

day to day, seasonally and with synoptic types is large based on the ground-based ob-314

servations discussed in Silber et al. (2018) and therefore interannual variability could also315

partially explain this difference. We also note that the cloud thresholding scheme avail-316

able in the ALCF software likely provides a conservative estimate of cloud occurrence.317

Satellite observations averaged over the Ross Ice Shelf detailed in Jolly et al. (2018)318

show peak cloud occurrences between 20 and 30% at approximately 2 km for all seasons319

which are larger than the peak values observed by the CL51 ceilometer in Figure 1. How-320

ever, the satellite observations have lower cloud occurrences than the CL51 ceilometer321
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Figure 1. Mean vertical profiles of cloud occurrence for the period 14th February 2022 to

31st December 2023 derived from CL51 ceilometer observations (black line) and the AMPS

(pink line), ERA5 (green line), JRA55 (orange line) and MERRA2 (blue line) model fields after

processing using the ALCF ground-based lidar simulator.
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values at altitudes below approximately 2 km. This difference is likely due to different322

instrument sensitivities. In particular, satellite observations of low-level cloud will likely323

be underestimates, while ground-based observations of upper-level cloud occurrence will324

be underestimates (McErlich et al., 2021). This comparison highlights the important of325

different instrument sensitivities. Comparison between model properties and observa-326

tions which do not account for instrument sensitivities can thus bias model evaluations.327

Comparison between the CL51 observations and the ERA5, JRA55 and MERRA2328

cloud occurrence profiles derived using ALCF displayed in Figure 1 show low biased val-329

ues relative to the CL51 observations of cloud occurrence for altitudes below 3 km and330

high biased cloud occurrences in ERA5, JRA55, and MERRA2 above that altitude. The331

Polar WRF cloud occurrence values derived from ALCF are slightly higher than the CL51332

observations above 1 km and lower than the CL51 observations below 1 km. But, com-333

pared to the three reanalyses display very good correspondence with the CL51 ceilomter334

observations. Unfortunately, the Polar WRF simulations used are derived from the op-335

erational Antarctic Mesoscale Prediction System and the configuration of the Polar WRF336

changes multiple times during this study. We therefore limit the use of this dataset in337

later analysis and focus on the three reanalyses. However, the fact that a numerical model338

which includes tuning for the polar environment displays such a significant improvement339

relative to the reanalyses is notable.340

Work detailed in Yip et al. (2021) compared the same AWARE observations as used341

in Silber et al. (2018) with CAM6 model data. The CAM6 simulations examined in Yip342

et al. (2021) were nudged toward MERRA2 reanalyses temperature and wind fields. Sim-343

ilar to our results, they identified sizable overestimates (underestimates) of cloud occur-344

rence above (below) 3 km in the model. We also note that the general form of the ver-345

tical profile of cloud occurrence in MERRA2 displayed in Figure 1 is rather similar to346

the CAM6 equivalent, though the CAM6 cloud occurrence is roughly 15% greater than347

the corresponding MERRA2 values at the same altitude. This is likely associated with348

changes in the comparison process due to the use of an instrument simulator in this study.349

Yip et al. (2021) also identified that cloud occurrence biases were closely associ-350

ated with concurrent biases in relative humidity in the CAM6 model. With high rela-351

tive humidity biases between the CAM6 data and observations above 2 km and low rel-352

ative humidity biases below 2 km. To test whether this may also be a controlling fac-353

tor for the three reanalyses, we compare the relative humidity from the reanalyses with354

radiosonde observations launched from the nearby (less than 3 km separation) McMurdo355

station. Figure 2 displays the median and interquartile ranges of the difference between356

radiosonde observations and the three reanalyses (model-observation). The difference357

between the McMurdo radiosonde relative humidity and the ERA5 values, shown in Fig-358

ure 2 (a), display overestimates of the relative humidity below 2 km, a region of under-359

estimates between 2 and 4.5 km and larger overestimates above this altitude. A simi-360

lar pattern of bias between the observations and the JRA55 reanalyses relative humid-361

ity is displayed in Figure 2 (b), though the biases are larger than those from the ERA5362

dataset apart from at around 9 km. The MERRA2 observations display the same struc-363

ture of bias as ERA5 and JRA55 relative to the radiosonde observations.364

Figure 3 (a)-(d) displays vertical profiles of the median and interquartile range cloud365

occurrence for each season from the ceilometer observations and the three reanalyses.366

Examination of the CL51 observations shows the largest cloud occurrences and the largest367

range of values occurs in austral autumn (MAM) and winter (JJA) and lower values o368

fthe cloud occurrence and interquartile range in austral spring (SON) and summer (DJF).369

In particular, the median cloud occurrence is up to 25% in austral autumn and winter,370

but below 20% in austral spring and summer. However, in every season the largest cloud371

occurrences are observed in the 2 km directly above the surface in the Cl51 observations372

and cloud occurrence reduces relatively quickly between 2 and 4 km to only a few per-373

cent above 4 km in all seasons. The reanalyses results display marginally higher values374
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Figure 2. Median and interquartile ranges of the difference between radiosonde observa-

tions and reanalyses values of relative humidity for the ERA5 (a), JRA55 (b) and MERRA2 (c)

reanalyses.

in austral spring, but small seasonal variations. It is also relatively clear that cloud oc-375

currences are lower in the JRA55 reanalysis than the other two reanalyses which show376

more comparable results. Though, as previously seen in Figure 1 the MERRA2 model377

output has higher cloud occurrences at higher altitudes than the ERA5 values.378

The biases between the reanalyses and the CL51 ceilometer observations (model379

- observations) are shown in Figure 3 (e)-(h) for each season. In each season, a large un-380

derestimate (15-30%) in cloud occurrence is observed for all three reanalyses below 3 km381

with a smaller overestimate in cloud occurrence in the reanalyses above 3 km. Interest-382

ingly, the bias at low altitudes is comparable to the values identified by Yip et al. (2021)383

and Kuma et al. (2021). The ERA5 reanalysis displays the smallest biases of the three384

reanalyses at most altitudes in most seasons. The JRA55 reanalysis displays the largest385

underestimates below 3 km in all seasons and the MERRA2 reanalysis has the largest386

overestimates relative to the CL51 observations above 3 km in all seasons. Closer inspec-387

tion of Figure 3 (e)-(h) shows variations in the bias with season, with the largest under-388

estimates below 3 km in austral autumn and winter and the smallest underestimates in389

austral spring and summer. An examination of the altitudes where the reanalyses over-390

estimate cloud occurrence also shows that the austral spring displays the largest over-391

estimates, which reach 10% in MERRA2. Notably the magnitudes of the underestimated392

and overestimated values are more similar in Yip et al. (2021) than in this study. This393

difference can likely be explained by the use of an instrument simulator in this study which394

allows a more robust comparison between the observations and the model output. Ef-395

fectively, the low cloud occurrences in the observations at higher altitudes are likely im-396

pacted by instrument sensitivity which means that they are likely low biased estimates.397

The median and interquartile ranges for cloud fraction, which is defined in this study398

as the temporal average cloud occurrence independent of altitude, as a function of month399

are displayed in Figure 4. A quite small variation in the median cloud fraction between400

months is observed for both the CL51 observations and the three reanalyses. In partic-401

ular, for the CL51 observations and for the three reanalyses the interquartile range in402
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Figure 3. Median and interquartile ranges of cloud occurrence vertical profiles derived from

CL51 ceilometer observations (black line), ERA5 (green line), JRA55 (orange line) and MERRA2

(blue line) model fields after processing using the ALCF ground-based lidar simulator are dis-

played for austral summer (a), autumn (b), winter (c) and spring (d). The model bias (model

minus observation means) is also shown for austral summer (e), autumn (f), winter (g) and

spring (h).
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Figure 4. Median and interquartile ranges of cloud fraction each month derived from CL51

ceilometer observations (black line), ERA5 (green line), JRA55 (orange line) and MERRA2 (blue

line) model fields after processing using the ALCF ground-based lidar simulator.

any month usually contains the range of median values for all months. However, com-403

parison of the median cloud fraction between the CL51 observations and the three re-404

analyses very clearly shows large offsets. In particular, the median values of cloud frac-405

tion for the CL51 observations are between 62-92%, the ERA5 values are between 27-406

63%, the JRA55 values are between 10-22% and the MERRA2 values are 32-62%. It is407

thus very clear that all three reanalyses underestimate cloud fraction, though the un-408

derestimate is particularly large for the JRA55 reanalyses.409

3.1 Synoptic classification410

The relatively small variation between the different seasons observed in Figure 3411

and 4 has previously been identified in other studies. In particular, Jolly et al. (2018)412

and Silber et al. (2018) identified that the synoptic situation has a much larger impact413

on vertical cloud distributions in this region than seasonal variability. We therefore com-414

plete a synoptic classification over the Ross Sea region, this allows the CL51 ceilometer415

data collected from Scott Base between February 2022 and January 2024 to be categorised416

based on synoptic state. The method used to complete this synoptic classification is de-417

tailed in Section 2.3. The surface horizontal wind vectors and wind speeds associated418

with each synoptic state are shown Figure 5 over the Ross Sea region. This classifica-419

tion is used to group the corresponding data from the CL51 observations and the out-420

put of the ALCF lidar simulator output derived from the three reanalyses in Figure 6.421

A 3 × 3 SOM (3 columns and 3 rows) was selected for our classification because422

it minimized quantization error and represented a good balance in terms of representa-423

tion of the wind patterns over the region. The set of nodes from this reference period424

are used throughout this study for grouping the ceilometer data collected and also to group425

the corresponding data from the ALCF lidar simulator (Kuma et al., 2021) derived from426

the ERA5, JRA55 and MERRA2 models.427

The different wind patterns in Figure 5 are dominated by southerly winds in all428

of the nodes derived, except for node 2. But, the magnitude of the wind changes signif-429

icantly. For example, nodes 2 and 5 display weak winds directly over Ross Island, the430
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Figure 5. Near-surface (10m) horizontal wind speeds and directions for each of the 9 nodes in

the SOM derived from ERA5 reanalysis output for the period 1980–2024.

site of Scott Base and the ceilometer, while node 1 displays rather strong winds directly431

to the east of Ross Island. We also note that the nodes at the opposite corners of the432

SOM (node 2 and 6) display the largest difference in terms of wind magnitudes. Node433

2 is also dominated by westerly winds.434

Figure 6 displays vertical profiles of cloud occurrence for the CL51 observations and435

the results of the application of the ALCF instrument simulator to the three reanaly-436

ses grouped based on the synoptic conditions displayed in Figure 5. Examination of the437

CL51 cloud occurrence patterns shows significantly larger variability between synoptic438

states (Figure 6) than for different seasons (Figure 3). In particular, nodes 1 and 4 dis-439

play maximum cloud occurrences above 40% at altitudes below 2 km. Though, the cloud440

occurrence begins to fall from around 50% from 1 km. While the lowest CL51 cloud oc-441

currences are observed in node 2 and 5. We also note that high cloud occurrences are442

very close to the surface in nodes 6 and 7 which potentially suggests the presence of wind443

blown snow, fog or low-level temperature inversions in these synoptic situations.444

Vertical profiles of the cloud occurrence derived from the ERA5 reanalysis show445

higher values for node 1 and 4 close to 2 km and lower values in node 2 and 5 in Fig-446
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ure 6. These patterns match closely with the CL51 ceilometer observations for these syn-447

optic situations above 2 km. However, the cloud occurrence is underestimated for all nodes448

below 2 km. Additionally, nodes 6, 7 and 8 display substantial overestimates in a rel-449

ative sense for cloud occurrence above 2 km.450

Vertical profiles of the cloud occurrence derived from the JRA55 and MERRA2 re-451

analyses also show higher values for node 1 and 4 and lower values in node 2 and 5 in452

Figure 6. However, these patterns match much less closely with the CL51 ceilometer ob-453

servations than the ERA5 values. The patterns are quite consistent between the JRA55454

and MERRA2 simulation results, though notably the MERRA2 cloud occurrences are455

higher at nearly every altitude in every node than the corresponding JRA55 values. Ad-456

ditionally, for nodes 3, 6, 7 and 8 the JRA55 and MERRA2 values display substantially457

overestimated cloud occurrence above 2 km relative to the CL51 ceilometer observations.458

These overestimates are also significantly larger than those observed between ERA5 and459

the CL51 ceilometer observations. However, the cloud occurrence is underestimated for460

all nodes below 2 km.461

3.2 Cloud phase analysis462

To obtain more information from the ceilometer observations we apply the XGBoost463

algorithm detailed in Guyot et al. (2022) to derive the fraction of cloud that is associ-464

ated with super-cooled liquid water. Figure 7 (a) displays the attenuated volume backscat-465

ter coefficient data over Scott Base for the 27th March 2022. On this day, a narrow band466

of low-altitude (< 1 km) multi-layer cloud occurs between 00:00 and 09:00 UTC, while467

a thicker band of cloud is present at altitudes ranging from 1-3 km between 15:00 and468

23:00 UTC. The cloud classification displayed in Figure 7 displays thin ice cloud layers469

close to the surface between 00:00 and 09:00 UTC capped by strongly attenuating super-470

cooled cloud layers. The thicker cloud layer between 15:00 and 23:00 UTC either has an471

ice cloud or undefined classification. The presence of a small amount of super-cooled liq-472

uid cloud within that thicker layer may suggest the presence of mixed phase cloud or may473

be a classification error. The lack of depolarisation data from the CL51 ceilometer means474

that we can not validate the Guyot et al. (2022) scheme. But, visual inspection does sug-475

gest that the strongly attenuating cloud layer between 00:00 and 09:00 UTC is correctly476

classified as super-cooled liquid cloud. Though, the lack of continuity in the backscat-477

ter coefficient data for that layer suggests that any estimates super-cooled liquid water478

cloud pressence are likely to be conservative. This also tallies with results from Guyot479

et al. (2022) which came to the same conclusion. We also note the relatively high pro-480

portion of undefined clouds in this case, which means that these peaks in the attenuated481

volume backscatter coefficient can not be classified as either ice or super-cooled liquid482

water. This is potentially due to the presence of mixed phase cloud in our observations.483

We also reiterate that the classification scheme detailed in Guyot et al. (2022) does ap-484

pear to be sensitive to the calibration factors applied to the data. We thus advise future485

users to complete calibration using the O’Connor et al. (2004) or Hopkin et al. (2019)486

scheme rather than using default values from ALCF.487

The application of the Guyot et al. (2022) XGBoost scheme allows us to derive the488

fraction of cloud peaks classified as super-cooled liquid water relative to other classes (the489

combination of ice and undefined). The mean fraction of super-cooled liquid water cloud490

as a function of altitude can then be derived from the CL51 ceilometer observations be-491

tween 14th February 2022 to 31st December 2023. Figure 8 (a) displays vertical pro-492

files of the occurrence of super-cooled liquid water cloud and all cloud. We note that the493

super-cooled liquid water cloud fraction remains relatively constant between 0.5 to 2.5494

km at an occurrence rate of 5%, then rapidly declines to near zero values above 4 km.495

The form of this vertical profile is very similar to that previously displayed in Silber et496

al. (2018) with near constant values between 0.5 and 3 km. Though, we note that the497

cloud occurrence is again lower than that identified in Silber et al. (2018). We again be-498
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Figure 6. Mean vertical profiles of cloud occurrence for each synoptic state for CL51 ceilome-

ter observations (black), ERA5 (green), JRA55 (orange), and MERRA2 (blue) model fields.
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Figure 7. Cl51 ceilometer attenuated volume backscatter coefficient data over (a), and the

(Guyot et al., 2022) cloud mask (b) for 27th March 2022. AMPS air temperature contours are

overlaid in (a) for reference.

lieve that this is associated with differences in the capability of the HSRL used in Silber499

et al. (2018) and the CL51 ceilometer observations used in the present study.500

Figure 8 (b)-(e) display the mean cloud occurrence and the super-cooled liquid wa-501

ter cloud fraction for each season. The mean cloud occurrence displays similar patterns502

to the median values previously shown in Figure 3 as expected. Comparison of the super-503

cooled liquid water cloud occurrences between the seasons shows the highest super-cooled504

liquid water fractions in austral summer (Figure 8 (b)) and the lowest values in the aus-505

tral winter (Figure 8 (d)). Thus, while the vertical profile of cloud occurrence is strongly506

defined by synoptic state (see Figure 6), cloud phase is strongly controlled by season. This507

likely reflects variations in the the occurrence of temperatures between the 0◦C isotherm508

and the homogeneous freezing level (-38◦C) with season.509

The Guyot et al. (2022) XGBoost scheme requires information on the width of cloud510

peaks. In particular, super-cooled liquid water cloud is partially identified by narrow peaks511

in the vertical profiles of attenuated volume backscatter coefficient. The low vertical res-512

olution of the reanalysis and their varying vertical resolution with altitude precludes the513

use of the scheme as derived in Guyot et al. (2022) on this model output. Instead we ap-514

ply the simple scheme detailed in Desai et al. (2023) in which cloud phase is defined us-515

ing the ice mass fraction (µice). The ice mass fraction is shown in Equation 1 and is ob-516

tained by taking the ratio of the ice water content (IWC) to the total water content. Desai517

et al. (2023) classified grid points where µice > 0.9 as ice, 0.1 ≤ µice ≤ 0.9 as mixed518

phase, and µice < 0.1 as liquid phase.519

µice =
IWC

IWC+ LWC
(1)
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Figure 8. Mean vertical profiles of cloud occurrence averaged over the observational period

(a) and austral summer (b), spring (c), winter (d) and autumn (e) derived from CL51 ceilome-

ter observations (black line) and the corresponding super-cooled liquid water occurrence (black

dotted line).

Figure 9 (a)-(c) displays vertical profiles of the mean ice water fraction for the ERA5,520

JRA55 and MERRA2 reanalysis data at Scott Base derived between 2022 and 2023 in-521

clusive. The ice water fraction is near one for ERA5 everywhere apart from the lowest522

2 km of the atmosphere (see Figure 9 (a)) which suggests that nearly all the cloud iden-523

tified would be ice cloud based on the Desai et al. (2023) scheme. The ice water frac-524

tion is even larger for the JRA55 reanalysis with only the lowest altitude displaying a525

value which would be connected to mixed phase cloud. Interestingly, the MERRA2 re-526

analysis shows much smaller ice cloud fraction values than ERA5 and JRA55, with val-527

ues between 0.1 and 1.0 between the surface and 6 km, above which the mean value is528

one.529

Figure 9 (d)-(f) display the total cloud occurrence taken directly from the reanal-530

yses, and the cloud occurrence associated with ice and liquid water derived using the Desai531

et al. (2023) scheme. Comparison between the total cloud occurrence in Figure 9 (d)-532

(f) and Figure 1 allows the effect of the instrument simulator to be examined. Compar-533

ison between Figure 9 (d) and Figure 1 shows that the raw ERA5 cloud occurrences are534

around 4-5% higher than those derived after the application of the instrument simula-535

tor. This difference likely represents the impact of attenuation by low-level cloud and536

instrument sensitivity affects meaning that tenuous clouds will not meet the backscat-537

ter threshold used in the cloud detection scheme. Comparison between Figure 9 (e) and538

Figure 1 shows that the raw JRA55 cloud occurrences have marginally higher values than539

those derived via the instrument simulator, the small difference may be associated with540

the small quantity of low-level cloud in the JRA55 simulation. Finally, inspection of Fig-541

ure 9 (f) and Figure 1 shows a sizable difference between the raw MERRA2 cloud oc-542

currences and those derived from the instrument simulator. The difference is particu-543

larly large above 2 km, again likely due to instrument sensitivity factors and the sim-544

ulation of the effect of attenuating low-level clouds. This comparison demonstrates the545

value of the use of instrument simulators in the evaluation of model output.546

We now focus on the occurrence of ice and liquid water cloud, as identified by the547

Desai et al. (2023) scheme, in Figure 9 (d)-(f). Notably ERA5 and JRA55 display such548

small quantities of liquid water that the occurrence of that cloud is barely visible rela-549

tive to the zero occurrence line. Interestingly, MERRA2 displays liquid water occurrences550

up to approximately 2.5% below 2 km. However, these values are still considerably smaller551
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Figure 9. Mean vertical profiles of the ice water faction (µice) for the ERA5 (a), JRA55 (b)

and MERRA2 (c) reanalysis. Mean vertical profiles of the cloud occurrence (full line) from the

ERA5 (d), JRA55 (e) and MERRA2 (f) reanalysis. The cloud occurrence associated with ice

(dashed line), liquid (dotted line) water derived from the analysis of µice using the methodology

detailed in Desai et al. (2023), as well at the total cloud occurrence (full line) are presented in (d)

through (f). Note that cloud occurrences have not been derived from data processed using the

ALCF lidar simulator.
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than the occurrence of super-cooled liquid cloud in Figure 8, though the fraction of liq-552

uid water to the total cloud occurrence is larger than that in Figure 8. Comparison of553

the ice water cloud occurrence (dashed line) and total cloud occurrence in Figure 9 (d)554

show that some mixed phase cloud, as identified by the Desai et al. (2023) scheme, ex-555

ists at altitudes below 4 km in the ERA5 dataset. Similar comparison for Figure 9 (e)556

shows a very small of mixed phase cloud exists below 2 km in the JRA55 reanalysis. Fi-557

nally, the difference between the ice cloud occurrence line and the total cloud occurrence558

line in Figure 9 shows that mixed phase cloud makes up the majority of the cloud ob-559

served between approximately 2 and 5 km in the MERRA2 reanalysis.560

4 Conclusions and Discussion561

This paper has principally detailed an analysis of CL51 ceilometer observations rel-562

ative to ERA5, JRA55 and MERRA2 model output that has been processed using an563

instrument simulator. The application of the instrument simulator to the reanalyses out-564

put allows the derivation of pseudo-backscatter profiles, which in turn can be processed565

using the same cloud mask algorithm. This processing therefore allows a like-for-like com-566

parison to be performed between the ceilometer and reanalyses output which accounts567

for instrumental sensitivities and differences in the way that the models represent cloud.568

Comaprison between cloud occurrences derived from the instrument simulator (Figure 1)569

and those taken directly from the reanalyses (Figure 9) highlight the value of this method-570

ology. However, it must be borne in mind that the nature of the radiative transfer cal-571

culations used in the lidar simulator mean that the impact of both cloud phase and cloud572

fraction are convolved.573

Comparison of the CL51 ceilometer vertical profiles of cloud occurrence relative to574

previous observations made during the AWARE campaign (Lubin et al., 2020) suggest575

that low-level cloud may be underestimated because of differences in instrument sensi-576

tivity. However, comparison with previous CALIOP-CloudSat climatologies over the Ross577

Ice Shelf (Jolly et al., 2018) suggest that these observations observe significantly more578

cloud below 2 km than the satellite observations, this result further supports the con-579

clusions made in McErlich et al. (2021).580

Critically, we find that the vertical profile of cloud occurrence for all three reanal-581

yses shows significant underestimation below 3km and a smaller overestimation above582

that altitude relative to the CL51 observations. This result compares qualitatively with583

a comparison between CAM6 simulations and the AWARE dataset detailed in Yip et584

al. (2021) which was partially attributed to low biases in humidity relative to observa-585

tions.586

Recent work detailed in Zhang et al. (2023) has identified that output from the En-587

ergy Exascale Earth System Model version 2 (EAMv2) tends to overestimate cloud fre-588

quency of occurrence throughout the year in Antarctica which differs from our results.589

However, they also find that cloud base height and cloud top height are much higher than590

observations across the year. This would suggest underestimates of cloud occurrence at591

low altitudes and overestimates at higher altitudes which match with the results observed592

in the present study. They also identify that EAMv2 tends to simulate stratiform mixed-593

phase clouds with significantly underestimated liquid water paths at McMurdo station.594

This matches with results form the ERA5 and JRA55 reanalysis which show smaller frac-595

tions of liquid water clouds than identified in the ceilometer observations using the XG-596

Boost scheme (Guyot et al., 2022).597

Furthermore, Yip et al. (2021) highlighted a strong positive relationship between598

biases in cloud occurrence and relative humidity between CAM6 model output and ob-599

servations made at McMurdo station. Examination of Figure 2 and Figure 3 (e)-(h) shows600

that this relationship is not identified when looking at the three reanalyses relative to601
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the observations used in this study. In particular, the relative humidity is overestimated602

in all of the reanalyses relative to radiosonde observations made at McMurdo station in603

the bottom 2 km of the atmosphere, while cloud occurrences are underestimated. This604

difference between the present study and the result in Yip et al. (2021) could be partially605

explained by our use of an instrument simulator which allows a more robust compari-606

son between the cloud occurrence observations and the model output. The similar mag-607

nitudes of the underestimated and overestimated cloud occurrences below and above 3km608

in Yip et al. (2021) are potentially caused by the a lack of consideration of instrumen-609

tal factors relative to our analysis which shows much larger biases at low altitudes. The610

lack of correlation between relative humidity and cloud occurrence biases at low-levels611

for the three reanalyses suggests that the cloud occurrence biases are likely due to pa-612

rameterisation errors.613

Further support for the robustness of the present analysis comes from results in Kuma614

et al. (2020), which compared ceilometer observations against nudged HadGEM3 gen-615

eral circulation model and MERRA2 reanalysis output processed using the ALCF in-616

strument simulator. In particular, the biases between the MERRA2 cloud occurrences617

and the ceilometer observations over the Southern Ocean were quite similar to those ob-618

served in the present study at low altitudes.619

Our results also show that the CL51 ceilometer seasonal cloud occurrence and cloud620

fraction shows little variation, similar to results in Jolly et al. (2018) and Silber et al.621

(2018). Notably, we find that there is a lack of a strong seasonal cycle in cloud fraction622

in both the CL51 ceilometer observations and the reanalyses. However, the cloud frac-623

tion is underestimated by around 25% in ERA5 and MERRA2 and by 70% in JRA55624

relative to the CL51 ceilometer observations. This work thus further demonstrates the625

value of instrument simulators model evaluation.626

Given that previous work has highlighted the importance of synoptic state on cloud627

properties, we derived a synoptic classification using a similar methodology to that de-628

tailed in McDonald and Cairns (2020). As expected, when grouping cloud occurrence629

vertical profiles by synoptic state mean values display much larger variability than that630

observed for different seasons. All three reanalyses continue to display underestimates631

of cloud occurrence above 3km and overestimates above 3km relative to the ceilometer632

observations for all the different nodes in our synoptic classification. However, the ERA5633

reanalyses variability in cloud occurrence matches the changes observed in the CL51 ob-634

servations for different synoptic state much better than the other two reanalyses. In par-635

ticular, higher cloud occurrences are observed for node 1 and 4 close to 2 km and lower636

values in node 2 and 5. Given that much of the higher altitude cloud in this region is637

associated with large scale synoptic features, such as extra-tropical cyclones, this sug-638

gests that ERA5 represents these controlling factors better in these situations than ei-639

ther JRA55 or MERRA2.640

Additionally, we note that the cloud occurrence is underestimated for all nodes be-641

low 2 km in all three reanalyses. Positively, vertical profiles of the cloud occurrence de-642

rived from the JRA55 and MERRA2 reanalyses do show variations in cloud occurrence643

which correspond with the CL51 observations, though the correspondence is much poorer644

than that between the CL51 observations and the ERA5 reanalyse above 2 km. Wile the645

patterns are quite consistent between the JRA55 and MERRA2 simulation results in gen-646

eral, the MERRA2 cloud occurrences are higher at nearly every altitude in every node647

than the corresponding JRA55 values. These results likely represent differences between648

the underlying cloud parameterisations in the different reanalyses.649

Finally, we apply a machine learning scheme developed for the classification of cloud650

phase from attenuated volume backscatter coefficient data. This scheme has been de-651

veloped and validated previously for polar conditions as discussed in detail in Guyot et652

al. (2022). While we can not validate this algorithm at Scott Base because of a lack of653
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polarisation data, visual inspection of attenuated volume backscatter coefficient data and654

cloud classifications appears to confirm that this scheme works well (see Figure 7), though655

may provide a conservative estimate of super-cooled liquid cloud. Classification of the656

climatological attenuated volume backscatter coefficient data from the CL51 observa-657

tions at Scott Base allows the mean occurrence of super-cooled liquid water cloud to be658

derived. The super-cooled liquid water cloud fraction remains relatively constant between659

0.5 to 2.5 km at an occurrence rate of 5% and rapidly declines above that level. This pat-660

tern matches with vertical profile identified in Silber et al. (2018), though the cloud oc-661

currence is again lower. This suggests that these relatively inexpensive vertically point-662

ing lidars which can be left unattended for long periods can be a valuable source of data663

on cloud properties in the Antarctic environment which complements satellite observa-664

tions. Application of a simple classification of reanalyses output, see details in (Desai665

et al., 2023), shows that ERA5 and JRA55 appear to significantly underestimate liquid-666

water cloud and mixed phase cloud relative to the values derived from the Cl51 obser-667

vations. While liquid water and mixed phase cloud makes up the majority of the cloud668

observed in the MERRA2 reanalysis below 5 km, possibly explaining the large difference669

between the raw cloud occurrence and the cloud occurrence derived from the instrument670

simulator for this reanalyses.671

In summary, our results highlight that the vertical profile of cloud occurrence for672

all three reanalyses shows significant underestimation below 3km and a smaller overes-673

timation above that altitude relative to the CL51 observations. The low-level biases are674

largest for the JRA55 reanalysis in terms of cloud occurrence and cloud phase. The MERRA2675

reanalysis displays the largest cloud occurrence biases at higher altitudes relative to the676

CL51 observations and appears to overestimate the proportion of super-cooled liquid and677

mixed phase cloud at low levels. The larger bias at higher altitudes likely offsets the low-678

level cloud occurrence biases in MERRA2 when cloud fraction is examined. Finally, the679

ERA5 cloud occurrence is significantly under-estimated relative to the ceilometer obser-680

vations at low-levels, but displays small biases elsewhere. In particular, the ERA5 re-681

analysis displays an improved representation of cloud occurrence when data is grouped682

based on synoptic state relative to the other two reanalyses.683

Further work will apply the machine learning scheme detailed in Guyot et al. (2022)684

to a set of ceilometer observations made across the Antarctic continent. This will pro-685

vide a set of surface observations distributed over a wide geographic region for compar-686

ison with satellite observations and reanalyses for the first time. It will also allow us to687

determine whether Scott Base can be considered to be a representative site for further688

cloud property analyses.689

5 Open Research690

The ERA5 reanalyses data used in this study are available for download from the691

Climate Data Store at https://doi.org/10.24381/cds.143582cf. The JRA-55: Japanese692

55-year Reanalysis 3-hourly data is available from the Research Data Archive at the Na-693

tional Center for Atmospheric Research, Computational and Information Systems Lab-694

oratory at https://doi.org/10.5065/D6HH6H41. The MERRA2 data is available for695

downalod from the GES-DISC download site at https://doi.org//10.5067/WWQSXQ8IVFW8.696

The AMPS archive data used in this study can be downloaded from https://www.earthsystemgrid697

.org/dataset/ucar.mmm.amps.html. The McMurdo Station Radiosonde Observations698

are available from https://doi.org/10.48567/ka0n-n046.699

All of the University of Canterbury ceilometer data proccesed using ALCF and the700

output from the ALCF lidar simulator derived from the various model archives (AMPS,701

ERA5, JRA55 and MERRA2) used in this study are accessible at Zenodo, along with702

code for creating all figures (https://doi.org/10.5281/zenodo.11458722, McDonald703
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and Plank, 2024). The Automatic Lidar Ceilometer Framework software package is avail-704

able at https://doi.org/10.5281/zenodo.3764287 (Kuma et al., 2021).705
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J., . . . Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly770

Journal of the Royal Meteorological Society , 146 (730), 1999-2049. doi:771

https://doi.org/10.1002/qj.3803772

Hofer, S., Amory, C., Kittel, C., Carlsen, T., Le Toumelin, L., & Storelvmo, T.773

(2021). The Contribution of Drifting Snow to Cloud Properties and the At-774

mospheric Radiative Budget Over Antarctica. Geophysical Research Letters,775

48 (22). doi: 10.1029/2021GL094967776

Hogan, R. J., Behera, M. D., O’Connor, E. J., & Illingworth, A. J. (2004). Estimate777

of the global distribution of stratiform supercooled liquid water clouds using778

the lite lidar. Geophysical Research Letters, 31 (5).779

Hopkin, E., Illingworth, A. J., Charlton-Perez, C., Westbrook, C. D., & Ballard, S.780

(2019). A robust automated technique for operational calibration of ceilome-781

ters using the integrated backscatter from totally attenuating liquid clouds.782

Atmos. Meas. Tech., 12 (7), 4131-4147. doi: 10.5194/amt-12-4131-2019783

Jolly, B., Kuma, P., McDonald, A., & Parsons, S. (2018). An analysis of the cloud784

environment over the Ross Sea and Ross Ice Shelf using CloudSat/CALIPSO785

satellite observations: the importance of synoptic forcing. Atmos. Chem. Phys.,786

18 (13), 9723-9739. doi: 10.5194/acp-18-9723-2018787

Kay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H.,788

& Eaton, B. (2016). Evaluating and improving cloud phase in the Com-789

munity Atmosphere Model version 5 using spaceborne lidar observations.790

Journal of Geophysical Research-Atmospheres, 121 (8), 4162-4176. doi:791

10.1002/2015jd024699792

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., . . . Taka-793

hashi, K. (2015). The JRA-55 Reanalysis: General Specifications and Basic794

Characteristics. Journal of the Meteorological Society of Japan, 93 (1), 5-48.795

doi: 10.2151/jmsj.2015-001796

Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE , 78 (9),797

1464-1480. doi: 10.1109/5.58325798

Kremser, S., Harvey, M., Kuma, P., Hartery, S., Saint-Macary, A., McGregor, J., . . .799

Parsons, S. (2021). Southern Ocean cloud and aerosol data: a compilation800

of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosys-801

tems and Environment voyage. Earth Syst. Sci. Data, 13 (7), 3115-3153. doi:802

10.5194/essd-13-3115-2021803

Kuma, P., Bender, F. A. M., Schuddeboom, A., McDonald, A. J., & Seland, O.804

(2023). Machine learning of cloud types in satellite observations and climate805

models. Atmos. Chem. Phys., 23 (1), 523-549. doi: 10.5194/acp-23-523-2023806

Kuma, P., McDonald, A. J., Morgenstern, O., Alexander, S. P., Cassano, J. J., Gar-807

rett, S., . . . Williams, J. (2020). Evaluation of Southern Ocean cloud in the808

HadGEM3 general circulation model and MERRA-2 reanalysis using ship-809

–23–



manuscript submitted to JGR: Atmospheres

based observations. Atmospheric Chemistry and Physics, 20 (11), 6607-6630.810

doi: 10.5194/acp-20-6607-2020811

Kuma, P., McDonald, A. J., Morgenstern, O., Querel, R., Silber, I., & Flynn, C. J.812

(2021). Ground-based lidar processing and simulator framework for comparing813

models and observations (ALCF 1.0). Geosci. Model Dev., 14 (1), 43-72. doi:814

10.5194/gmd-14-43-2021815

Lachlan-Cope, T. (2010). Antarctic Clouds. Polar Research, 29 (2), 150-158. doi: 10816

.1111/j.1751-8369.2010.00148.x817
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