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The Climate System
Components:
– Atmosphere
– Ocean
– Cryosphere
– Biosphere
– Humans

Forcing:
– Solar radiation
– Greenhouse gases (GHG)
– Aerosols
– Land use change
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Radiation Balance
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The radiation balance determines the rate of 
warming or cooling of the planet.

The only* way the climate system can warm 
or cool is by exchanging radiation with space:
– incoming solar radiation from the Sun
– outgoing terrestrial radiation due to 
Planck's law

The surface albedo and emissivity, and stuff 
in the atmosphere affects the radiation 
balance:
– greenhouse gases
– clouds
– aerosols Adopted from IPCC 4th Assessment Report.



Radiation Balance

Adopted from Petty (2006): A first course in atmospheric radiation. ⏵

GHGs absorb and emit radiation at different 
wavelengths according to allowed quantum 
transitions in their molecules.
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The reason for global warming



Radiation Balance

Adopted from Loeb et al. (2024): Observational Assessment of Changes in  
Earth’s Energy Imbalance Since 2000 [paper and slides].

At the "top of atmosphere" (TOA), measured by the 
satellite instruments CERES.

Absorbed longwave radiation:
– increased by GHGs
– decreased by more thermal cooling
– decreased slightly by clouds

Absorbed shortwave radiation:
– increased by lower cloud reflectivity
– increased by lower surface albedo

End effect: increased radiative warming.



Climate Models
Computer programs that simulate some or all components of the climate system.
Work by integrating various physical and statistical equations over time steps.

Primarily asking questions about:
– global temperature
– weather extremes
– circulation in the atmosphere and ocean
– sea ice and ice sheet reduction or growth
– clouds
– precipitation

Adopted from Alexander and Easterbrook (2015): The 
software architecture of climate models: a graphical 
comparison of CMIP5 and EMICAR5 configurations.

Adopted from Hohenegger et al. (2023): 
ICON-Sapphire: simulating the 
components of the Earth system and 
their interactions at kilometer and 
subkilometer scales.
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Adopted from Kuma et al. (2023): Climate model code genealogy and its relation to climate feedbacks and sensitivity.



Climate Supercomputing
Climate models have varying complexity:
– components included
– spatial and temporal resolution
– processes parametrised
– local, regional, or global

Computing requirements:
1. personal computer (low-res models and emulators)
2. workstation/server/single supercomputer node
3. cluster of supercomputing nodes or servers
(4. globally distributed clusters)

Large-eddy simulation
~ 100 m resolution
~ 10 km domain

Limited-area model
~ 10 km resolution
~ 1000 km domain

Earth system model
~ 100 km resolution
global domain

LES

LAM

ESM



Climate Supercomputing
Technically (almost) normal computer programs.
Programming languages:
– Fortran and C/C++
– Julia (niche)
– Python (niche)
– GPU special purpose languages
Operating system usually some Linux distribution.
Multi-threading (OpenMP) and clustering (MPI)

Typical supercomputer node:
–  ~256 GB RAM
– Dual Intel Xeon or AMD EPYC CPUs
– ~64 cores
– some "GPU nodes"

Examples: Levante (Atos) at DKRZ, Germany: 2832 nodes (14 PFLOPS);
Māui (Cray XC50) at NIWA, New Zealand: 464 nodes (1.425 PFLOPS)



Resolution vs. Performance
We want to use all available resources (RAM, CPU, GPU, 
and disk space):
– maximise resolution
– minimise time steps
– maximise number of climate components
– maximise number of physical processes

Over time CPU and GPU performance increases 
~exponentially.

Resolution increases demands with the fourth power (x × 
y × z × t).

Aim: compromise between all of the above. Adopted from Mauritsen et al. (2022): Early 
Development and Tuning of a Global Coupled 
Cloud Resolving Model, and its Fast Response to 
Increasing CO2



Climate Change
Greenhouse gases in the atmosphere absorb and 
emit thermal (terrestrial) radiation.

This is a normal state of the atmosphere, but:
– carbon dioxide increasing
– methane increasing
– water vapour increasing with temperature
– aerosols increasing, now slowly decreasing
– land use change limits carbon uptake, or 
releases carbon

Blocking terrestrial radiation → less escapes into 
space.
Climate feedbacks mostly accelerate warming.
Ocean acidification due to CO2 uptake into 
carbonic acid (H2CO3). Adopted from the IPCC 6th Assessment report.
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Climate Feedbacks

Temperature change triggers processes with increase/decrease radiative warming/cooling of the planet.
Initial push by GHGs, amplified by feedbacks.

Adopted from Kuma et al. (2023): Climate model code genealogy and its relation to climate feedbacks and sensitivity.
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Adopted from Judd et al. (2024): A 485-million-year history of Earth’s surface temperature. ▲

Paleo Greenhouse Gas and Temperature Change

Temperature evolution over the last 500 mil. years.

▲ Adopted from CenCO2PIP (2024): Toward a Cenozoic history of atmospheric CO2.

CO2 evolution over the last 66 mil. years.



GHG Emissions in the Past and Future
(Substantial) GHG emissions started with the industrial revolution (~1750 onwards).
Aerosol emissions mostly from 1950 onwards.
Peak GHG emissions still not reached.
Main GHG sources:
– fossil fuel burning (power generation, transport, industires, agriculture, ...)
– fossil fuel production
– livestock, rice growing (methane), and land use change
Main aerosol source: fossil fuel and biomass burning 

Adopted from UNEP Emissions Gap Report 2024. ▶

◀ Adopted from Gillett et al. 
(2021): Constraining human 
contributions to observed warming 
since the pre-industrial period.



Recent Temperature Change

Adopted from https://pulse.climate.copernicus.eu.

Strong global temperature 
jump observed in the last 
two years.

Now at about 1.5°C warmer 
than pre-industrial.

Probable reasons:
– El Niño
– Preceding years with La 
Niña suppressing warming
– changes in aerosols
– other unknown reasons

https://pulse.climate.copernicus.eu


Reducing Emissions
A mix of:
– renewables (solar, wind, ...) and nuclear 
energy, and less energy consumption
– electrified transport (EVs, ...), public transport, 
and less transport
– land use change and methane reduction:
    – reduce use of wood and paper
    – less land and methane intensive food

Geoengineering possible but very risky, we have 
options to reduce emissions now and quickly.

Adopted from IPCC 6th Assessment Report. ▶



km-scale Climate Modelling 
Recent generation of Earth system models have about ~100 km resolution.
To be replaced by ~1-10 km models in a few years.
Moving from parametrisation to explicitly resolving processes (convection, clouds, ocean eddies, ...).

From animation by René Redler (MPI-M), Helmuth Haak (MPI-M), and Felicia Brisc (CEN/UHH).



km-scale Climate Modelling 

Video 1

https://files.peterkuma.net/media/e3i2xmqkw5/icon.mp4

https://files.peterkuma.net/media/e3i2xmqkw5/icon.mp4


AI-based Climate Modelling 
Concept: Train a deep neural network (NN) on climate model or reanalysis output and using it to make 
projections.
Advantage: Deep NN are much faster than physical models.
Hybrid approach: Combine physics-based model with a deep neural network.

Currently most progress in AI-based weather forecasting:
– FourCastNet (NVIDIA)
– Pangu-Weather (HUAWEI CLOUD)
– GraphCast (Google)
– Aurora (Microso�)
– AIFS (ECMWF)
– ...

▼ Adopted from Bodnar et al. (2024): Aurora: A Foundation Model of the Atmosphere.



Microplastics
Plastics  degrade into smaller pieces, or are produced as small pieces.
Over time, they mix in the environment: atmosphere, ocean, and the cryosphere.
Microplastics: ~1µm–5mm
Nanoplastics: < 1µm
Primary (manufactured as microplastics) and secondary (from larger plastics).

Adopted from Thompson et al. (2024): Twenty years of microplastic pollution research—what have we learned?



Sources: macroplastics, textiles, tire and brake wear, paint, ...

Globally distributed including remote locations (the Arctric and Antarctic).

High concentrations in cities and over land. Low concentration over the ocean.

Sources of Microsplastics and Distribution

Adopted from Revell et al. (2021): Direct radiative effects of airborne microplastics.



Radiative Effects of Microplastics
Microplastics in the atmosphere can scatter and absorb 
solar and terrestrial radiation.

Input:
– a mix of fragments and fibres
– size distribution
– aspect ratio distribution
– index of refraction

Optical properties: from Mie theory and special 
computations (fibres)

Model: global climate model HadGEM3

Outcome: longwave warming and shortwave cooling

Adopted from Revell et al. (2021): Direct radiative effects of airborne microplastics.



Ship-based Observations over the Southern Ocean
Atmospheric measurements over the Southern Ocean 
are complementary to satellites.

Measurements of clouds, aerosols, and atmospheric 
thermodynamic profile using
various methods.

Adopted from Kuma et al. (2024): Ship-based lidar evaluation of Southern Ocean clouds in the storm-resolving general circulation model ICON and the 
ERA5 and MERRA-2 reanalyses [manuscript in preparation].



Ship-based Observations over the Southern Ocean

© Jeff Aquilina



Ship-based Observations over the Southern Ocean

Video  2 and 3

https://files.peterkuma.net/media/svxde2yho3/radiosonde.webm

https://files.peterkuma.net/media/3k146je3bn/uav.webm

https://files.peterkuma.net/media/svxde2yho3/radiosonde.webm
https://files.peterkuma.net/media/3k146je3bn/uav.webm


(a) PS81/3 CL51 (observed)

(b) PS81/3 ERA5 CL51 (simulated)

Lidars can measure 
backscattered laser radiation.

Clouds are aerosols are sampled 
vartically and over time.

Cloud fraction by height can be 
calculated from a cloud mask.

Using a lidar simulator, we can 
calculate the same for a climate 
model or a reanalysis.

Evaluation of Climate Models using Lidar Observations

Adopted from Kuma et al. (2024): Ship-based 
lidar evaluation of Southern Ocean clouds in the 
storm-resolving general circulation model ICON 
and the ERA5 and MERRA-2 reanalyses 
[manuscript in preparation].



Evaluation of Climate Models using Lidar Observations
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Cloud fraction by height can be compared between the observations (OBS) and models.

Models tend to underestimate cloud fraction, 
but overestimate reflected solar radiation.

Adopted from Kuma et al. (2024): Ship-based lidar evaluation of Southern Ocean clouds in the storm-resolving general circulation model ICON 
and the ERA5 and MERRA-2 reanalyses [manuscript in preparation].



Precipitation Detection from Lidar Backscatter Using ML
Profiles with precipitation are unwanted 
in the comparison.

We can train a U-Net neural network to 
identify samples with different conditions, 
based on limited human-performed 
observations.

Sensitivity about 65%, which is good 
enough for the filtering step.

Adopted from Kuma et al. (2024): Ship-based lidar 
evaluation of Southern Ocean clouds in the storm-
resolving general circulation model ICON and the 
ERA5 and MERRA-2 reanalyses [manuscript in 
preparation].



Using Meachine Learning to Identify Clouds

Identify cloud types using a neural network.

Training:
– global station observations
– satellite images (shortwave and longwave)

Prediction:
– satellite images
– equivalent climate model images

What is the distribution of clouds types in 
the reality and in the models?

What are the model errors?

How do they imact climate sensitivity?
Adopted from Kuma et al. (2023): Machine learning of cloud types in satellite observations and climate models.



Using Meachine Learning to Identify Clouds

Adopted from Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation.

Neural network of type U-Net.

encoder–decoder design

Input: 2D image with multiple 
channels (colour, etc.)

Output: 2D image with multiple 
channels.

Layers of downscaling,
followed by layers of upscaling.

Useful for classifying all pixels.



Using Meachine Learning to Identify Clouds
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Adopted from Kuma et al. (2023): 
Machine learning of cloud types in 
satellite observations and climate 
models.



Using Meachine Learning to Identify Clouds

Geographical distribution of 
cloud types.

IDD (station reference).

Climate model errors.

Adopted from Kuma et al. (2023): 
Machine learning of cloud types in 
satellite observations and climate 
models.



Using Meachine Learning to Identify Clouds

Models with greater error in the cloud types have a greater 
climate sensitivity.

It could imply that warmer models are more correct.

[But, correlation does not imply causation.]

Adopted from Kuma et al. (2023): Machine learning of cloud types in satellite observations and climate models.



Thank you for your attention. Questions?

Photos © Glen Walker, NIWA (TAN1802 voyage)


