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The Climate System

Components:
- Atmosphere
- Ocean

— Cryosphere
— Biosphere

- Humans

Forcing:

- Solar radiation

- Greenhouse gases (GHG)
- Aerosols

- Land use change
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Radiation Balance

The radiation balance determines the rate of
warming or cooling of the planet.

The only™ way the climate system can warm
or cool is by exchanging radiation with space:
- incoming solar radiation from the Sun

- outgoing terrestrial radiation due to
Planck's law

The surface albedo and emissivity, and stuff
in the atmosphere affects the radiation
balance:

- greenhouse gases

- clouds

— aerosols
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Adopted from IPCC 4th Assessment Report.
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Radiation Balance

At the "top of atmosphere" (TOA), measured by the

satellite instruments CERES.

Absorbed longwave radiation:

— increased by GHGs

- decreased by more thermal cooling
- decreased slightly by clouds

Absorbed shortwave radiation:
- increased by lower cloud reflectivity
- increased by lower surface albedo

End effect: increased radiative warming.
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Climate Models

Computer programs that simulate some or all components of the climate system.
Work by integrating various physical and statistical equations over time steps.

Primarily asking questions about: CESM1-BGC
— global temperature (O =1thousand lines of code
— weather extremes

— circulation in the atmosphere and ocean ocean

- seaice and ice sheet reduction or growth POP2

- clouds

— precipitation

sea ice
CICE4

shared utilities
iegetation

components of the Earth system and Adopted from Alexander and Easterbrook (2015): The
their interactions at kilometer and > software architecture of climate models: a graphical
subkilometer scales. comparison of CMIP5 and EMICARS configurations.

Adopted from Hohenegger et al. (2023):
ICON-Sapphire: simulating the




Climate Model Genealogy
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Climate Supercomputing

Climate models have varying complexity:
- components included

- spatial and temporal resolution

— processes parametrised

- local, regional, or global

Computing requirements:

1. personal computer (low-res models and emulators)
2. workstation/server/single supercomputer node

3. cluster of supercomputing nodes or servers

(4. globally distributed clusters)

LES

LAM

ESM

Large-eddy simulation
~ 100 m resolution
~ 10 km domain

Limited-area model
~ 10 km resolution
~ 1000 km domain

Earth system model
~ 100 km resolution
global domain



Climate Supercomputing

Technically (almost) normal computer programs.
Programming languages:

— Fortran and C/C++

— Julia (niche)

- Python (niche)

- GPU special purpose languages

Operating system usually some Linux distribution.
Multi-threading (OpenMP) and clustering (MPI)
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Typical supercomputer node:
- ~256 GB RAM

— Dual Intel Xeon or AMD EPYC CPUs
- ~64 cores

- some "GPU nodes"

Examples: Levante (Atos) at DKRZ, Germany: 2832 nodes (14 PFLOPS);
Maui (Cray XC50) at NIWA, New Zealand: 464 nodes (1.425 PFLOPS)

OTW & M0
0C OUTAUT @ 14100
AC NPUT @ 4NN O
onsa
-
oW+ MO
0C OUTAUT ®, LNdiN0
AC T @ indN
-
0C QUTPUT @, ANdLNO
AC NPT o, 4Ne O
a0 ontd
@
8
<
9
3
Y
7
8
<
@
3
=
‘!
8
<
@
-]
2
@
8
a
@
-]
4
M
3
4
7]
|
b4
)
g




Resolution vs. Performance

We want to use all available resources (RAM, CPU, GPU,
and disk space):

- maximise resolution

- minimise time steps

- maximise number of climate components

- maximise number of physical processes

Over time CPU and GPU performance increases
~exponentially.

Resolution increases demands with the fourth power (x x
y Xz xt),

Aim: compromise between all of the above.
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Climate Change

Greenhouse gases in the atmosphere absorb and

emit thermal (terrestrial) radiation. 4op "arts per million {ppm) 410 ppm €O,

This is a normal state of the atmosphere, but: 25l

- carbon dioxide increasing

- methane increasing

— water vapour increasing with temperature
- aerosols increasing, now slowly decreasing 1500
- land use change limits carbon uptake, or
releases carbon

300

Parts per billion (ppb) 1866 ppb CH,

1000

500
Blocking terrestrial radiation > less escapes into 400w 332 ppb N,O
space. 200
Climate feedbacks mostly accelerate warming. 1850 1900 1950 2000 2019

Ocean acidification due to CO, uptake into
carbonic acid (H,COs). Adopted from the IPCC 6th Assessment report.



Climate Feedbacks

Temperature change triggers processes with increase/decrease radiative warming/cooling of the planet.
Initial push by GHGs, amplified by feedbacks.
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Adopted from Kuma et al. (2023): Climate model code genealogy and its relation to climate feedbacks and sensitivity.




Paleo Greenhouse Gas and Temperature Change

CO7 evolution over the last 66 mil. years.

Temperature evolution over the last 500 mil. years.
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GMST

GHG Emissions in the Past and Future

(Substantial) GHG emissions started with the industrial revolution (~1750 onwards).

Aerosol emissions mostly from 1950 onwards.
Peak GHG emissions still not reached.
Main GHG sources:

- fossil fuel burning (power generation, transport, industires, agriculture, ...)

— fossil fuel production

- livestock, rice growing (methane), and land use change
Main aerosol source: fossil fuel and biomass burning
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Other

6%
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<4 Adopted from Gillett et al.
(2021): Constraining human
contributions to observed warming
since the pre-industrial period.
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<1% Other
(Indirect N,O and
fossil fuel fires)

Adopted from UNEP Emissions Gap Report 2024.



Recent Temperature Change

Daily global surface air temperature
Data: ERA5 1940-2024 e Credit: C3S/ECMWF

Strong global temperature
jump observed in the last
two years.

Now at about 1.5°C warmer
than pre-industrial.

Probable reasons:

- EI Nifio

- Preceding years with La
Nina suppressing warming
- changes in aerosols

- other unknown reasons

Temperature (°C)
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Adopted from https://pulse.climate.copernicus.eu.

Dec


https://pulse.climate.copernicus.eu

Reducing Emissions

A mix of: Net global greenhouse
- renewables (solar, wind, ...) and nuclear % gas (GHG) emissions
energy, and less energy consumption / 199 highor than 5010

- electrified transport (EVs, ...), public transport,
and less transport
- land use change and methane reduction:

- reduce use of wood and paper

- less land and methane intensive food

L Implemented policies

[: . Nationally Determined

1 ' Contributions (NDCs)
-~ range in 2030

40

Geoengineering possible but very risky, we have

options to reduce emissions now and quickly. 20

4Qf
Lrming 2
0 2°C

Limy
It
0 —net zer Lming 51 5o

® Gigatons of CO,-equivalent emissions (GtCO,-eq/yr)

Adopted from IPCC 6th Assessment Report. B> -2
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km-scale Climate Modelling

Recent generation of Earth system models have about ~100 km resolution.
To be replaced by ~1-10 km models in a few years.
Moving from parametrisation to explicitly resolving processes (convection, clouds, ocean eddies, ...).

From animation by René Redler (MPI-M), Helmuth Haak (MPI-M), and Felicia Brisc (CEN/UHH).



km-scale Climate Modelling

Video 1

https://files.peterkuma.net/media/e3i2xmqgkw5/icon.mp4


https://files.peterkuma.net/media/e3i2xmqkw5/icon.mp4

Al-based Climate Modelling

Concept: Train a deep neural network (NN) on climate model or reanalysis output and using it to make
projections.

Advantage: Deep NN are much faster than physical models.

Hybrid approach: Combine physics-based model with a deep neural network.

Currently most progress in Al-based weather forecasting:
— FourCastNet (NVIDIA)

- Pangu-Weather (HUAWEI CLOUD)

- GraphCast (Google)

— Aurora (Microsoft)

— AIFS (ECMWF)

V¥V Adopted from Bodnar et al. (2024): Aurora: A Foundation Model of the Atmosphere.
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Microplastics

Plastics degrade into smaller pieces, or are produced as small pieces.

Over time, they mix in the environment: atmosphere, ocean, and the cryosphere.
Microplastics: ~1um-5mm

Nanoplastics: <1lum

Primary (manufactured as microplastics) and secondary (from larger plastics).

Adopted from Thompson et al. (2024): Twenty years of microplastic pollution research—what have we learned?



Sources of Microsplastics and Distribution

Sources: macroplastics, textiles, tire and brake wear, paint, ...
Globally distributed including remote locations (the Arctric and Antarctic).

High concentrations in cities and over land. Low concentration over the ocean.

7 7 = e S
W B o I ‘ Gﬁ\ Location y Concentration (MP m=3)
. A ® Beijing, China'® 5,650

_“ ® London, United Kingdom?2 2,502
SR - Surabaya, Indonesia?° 109
- Bushehr Port, Iran (dusty days)’ 10.3

French Atlantic Coast (offshore wind)3
® Southern California?

g

Y . French Atlantic Coast (onshore wind)3
4 - Bushehr Port, Iran (normal days)’ 2.1
N @ Shanghai, China' 1.42
)’\ o @ Paris, France® 0.9
% O East China Sea'® 0.13
& @ South China Sea and West Pacific Ocean'”’ 0.11
N (/} O West Pacific Ocean'® 0.01

Adopted from Revell et al. (2021): Direct radiative effects of airborne microplastics.
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Adopted from Revell et al. (2021): Direct radiative effects of airborne microplastics.
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Ship-based Observations over the Southern Ocean

Atmospheric measurements over the Southern Ocean . copern — Ry Tangaroa
. . HMNZS Wellington
are complementary to satellites. ,, Y/ — NBPamer
///’ — RSV Aurora Australis
3 !Zl _______________ — RV Polarstern
Measurements of clouds, aerosols, and atmospheric south Georsiag ;,(A & Macquarie Is.

South Sandw¥ ‘

thermodynamic profile using
various methods.

S P

-

Ch c}'tham /s
We/.//n

Adopted from Kuma et al. (2024): Ship-based lidar evaluation of Southern Ocean clouds in the storm-resolving general circulation model ICON and the
ERA5 and MERRA-2 reanalyses [manuscript in preparation].
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Ship-based Observations over the Southern Ocean

Video 2 and 3

https://files.peterkuma.net/media/svxde2yho3/radiosonde.webm

https://files.peterkuma.net/media/3k146je3bn/uav.webm


https://files.peterkuma.net/media/svxde2yho3/radiosonde.webm
https://files.peterkuma.net/media/3k146je3bn/uav.webm

Evaluation of Climate Models using Lidar Observations

Lidars can measure (a) PS81/3 CL51 (observed)
backscattered laser radiation.

Clouds are aerosols are sampled
vartically and over time.

W

—h

)
[\

Cloud fraction by height can be
calculated from a cloud mask.

S,

(b) PS81/3 ERAS CL51 (simulated)

S
o

Using a lidar simulator, we can 12
calculate the same for a climate 10
model or a reanalysis. 8

3

Att. vol. backscattering coef. (x107® m~1sr1)

Adopted from Kuma et al. (2024): Ship-based 4
lidar evaluation of Southern Ocean clouds in the ,
storm-resolving general circulation model ICON e

and the ERA5 and MERRA-2 reanalyses | r ' . . . . . |
18/02 18/02 18/02 18/02 18/02 18/02 18/02 18/02 19/02

[manuscript in prepa ration]. 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time (UTC)




Evaluation of Climate Models using Lidar Observations

Cloud fraction by height can be compared between the observations (OBS) and models.

> == (OBS; CF 80% (72-89%); SW 147; LW 210
] ] - = |CON; CF 70% (60-79%); SW 121; LW 218
Models tend to underestimate cloud fraction, © .. MERRA-2; CF 61% (51-70%); SW 153; LW 214
but overestimate reflected solar radiation. 49} — ERAS; CF 58% (49-67%); SW 205; LW 217 ]
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Adopted from Kuma et al. (2024): Ship-based lidar evaluation of Southern Ocean clouds in the storm-resolving general circulation model ICON
and the ERA5 and MERRA-2 reanalyses [manuscript in preparation].



Precipitation Detection from Lidar Backscatter Using ML

(@) ANN diagram

Profiles with precipitation are unwanted
in the comparison.

Input (16 x 24 x 1) —— Convolution 2D (64, 3 x 3) — Maximum pooling 2D (2 x 2) —— Convolution 2D (128, 3 x 3) — Maximum pooling 2D (2 x 2) —‘

——» Convolution 2D (256, 3 x 3) — Maximum pooling 2D (1 x 2) — Dropout (20%) — Flatten —— Dense (64) —— Dense (4) —— Output (4)

We can train a U-Net neural networkto ) random example near-surface lidar backscatter samples of 5 min (horizontal axis) by 0-250 m (vertical xie)
identify samples with different conditions,
based on limited human-performed
observations.
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Using Meachine Learning to Identify Clouds

(a) Location of IDD stations: 2010-01-01
Identify cloud types using a neural network. o2
Training: N e s
- global station observations 0 " jj
- satellite images (shortwave and longwave) o N
Prediction: °0s N
- satellite images )
. . . (b) CERES (ANN)
- equivalent climate model images
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What are the model errors? - -
How do they imact climate sensitivity?
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Adopted from Kuma et al. (2023): Machine learning of cloud types in satellite observations and climate models.



Using Meachine Learning to Identify Clouds

Neural network of type U-Net. 1 64 64

128 64 64 2

encoder-decoder design |
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followed by layers of upscaling. AN
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Adopted from Ronneberger et al. (2015): U-Net: Convolutional Networks for Biomedical Image Segmentation.



Using Meachine Learning to Identify Clouds

(a) Training phase (b) Application phase
CERES CERES sample image
l or model 16px
sample images l 16px| SW LW
with station data sample images
i (2 channels per sample)
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Adopted from Kuma et al. (2023): orm orm
Machine learning of cloud types in . geographical global - | |
satellite observations and climate . distribution mean and trend Probability of observing clouds of a given type

models. i at a virtual ground station (if not obscured).



Using Meachine Learning to Identify Clouds

High Middle Cumuliform Stratiform

Geographical distribution of &

cloud types.

CERES |

IDD (station reference).
IDD |-

Climate model errors.

INM-CM4-8 | _
ECS1.8K
Total RMSE 8.0%

INM-CM5-0| _
ECS 1.9 K
Total RMSE 7.8%

NorESM2-LM
ECS 2.5K
Total RMSE 12.0%

Adopted from Kuma et al. (2023):

Machine learning of cloud types in MPI-ESM-1-2-HAM
) . . ECS 3.0 K

satellite observations and climate  Total RMSE 14.2%

models.

Cloud type occurrence error (%)

Cloud type occurrence (%)



Using Meachine Learning to Identify Clouds

Models with greater error in the cloud types have a greater 60 @ ~viesvinin
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Adopted from Kuma et al. (2023): Machine learning of cloud types in satellite observations and climate models.



Thank you for your attention. Questions?
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