

Evaluation of HadGEM3 Southern Ocean cloud using observations and reanalyses

Peter Kuma*, Adrian McDonald*, Olaf Morgenstern**, Simon Parsons*, Vidya Varma**

*University of Canterbury, Christchurch **NIWA, Wellington

5 December 2018, NZ Hydrological Society & Meteorological Society of NZ Joint Conference, Christchurch

Introduction

Shortwave radiation (SW) bias in the Southern Ocean (SO) is present in multiple general circulation models due to cloud representation.

Possible causes:

- Cyclones (cold sectors)
- Boundary layer stability/thermodynamics
- Cloud-aerosol interaction / ice nuclei
- Cloud (in)homogeneity
- Cloud phase supercooled liquid
- Sub-gridscale cloud parametrisation

SO view from space

3 December 2018, DSCOVR/EPIC, https://epic.gsfc.nasa.gov.

Models and reanalyses

- NZESM (NIWA version of HadGEM3) GA7.0 and GA7.1 atmospheric model
 - 1980–89 run (non-nudged)
 - 2007 run (nudged)
- MERRA-2 reanalysis
 - years 2015-2018

SW radiation bias

CERES (Satellite)

GA 7.0 vs. CERES

Methods

- Comparison:
 - GA7.0, GA7.1, MERRA-2 models
 - ship observations (OBS)
- COSP simulator:
 - ground-based lidar simulator based on ACTSIM (CALIPSO lidar sim.)
 - reversal of layers
 - account for different Mie and Rayleight scattering (wavelength dependence)
- Derived quantities:
 - lidar cloud detection, noise removal
 - cloud occurrence statistics
 - model "pseudo-radiosoundings", lifting levels

Processing pipeline - lidar and radiosoundings / model & OBS

Southern Ocean voyages (1/2)

How to defend yourself against a penguin (with a broom)

TAN1802, 2018, Ross Sea. Photo by Amelia Connell.

Southern Ocean voyages (2/2)

- Instruments:
 - ceilometer Vaisala CL51 & Lufft CHM 15k
 - radiosondes
 - AWS
- Voyages:
 - TAN1802 RV Tangaroa, NIWA, Ross Sea, 2018
 - TAN1502 RV Tangaroa, NIWA, Ross Sea, 2015
 - HMNZSW16 HMNZS Welligton, Royal New Zealand Navy, Ross Sea, 2016
 - NBP1704 Nathaniel B. Palmer, NSF, Ross Sea, 2017
 - AA15 Aurora Australis, AAD, 2015–2016
- Subsets:
 - by season: December-January-February (DJF), March-April-May (MAM)
 - by latitude: 55–60°S, 60–65°S, 65–70°S

Ceilometer

Vaisala CL51 backscatter, 24 hours. Aurora Australis ("AA15"), Davis Sea, 2015.

Pseudo-lidar (COSP)

MERRA-2 (1 \times 1 °), TAN1802 track, Ross Sea, 14 March 2018.

Results

- GA7.0 vs. MERRA-2 vs. ship observations
 - Cloud occurrence
 - SST lifting level
 - Zonal plane plots
- TAN1802 human & AWS observations

Cloud occurrence

Lifting level / cloud base height (1/2)

2018-02-20 07:31:45 UTC | 171 55.896'E 71 56.213'N

2018-03-08 00:09:14 UTC | 176 13.387'W 66 57.307'S

TAN1802, RV Tangaroa, Ross Sea, 2018.

Lifting level / cloud base height (2/2)

TAN1802, RV Tangaroa, Ross Sea, 2018.

SST lifting level

Zonal plane - GA7.0 vs. MERRA-2

Daily average, latitude: 60°S, cloud liquid (red), cloud ice (green), potential temperature (blue).

TAN1802 human & AWS observations

Cloud Type/Cloud Cover	0	1	2	3	4	5	6	7	8	All
Stratus	0	0	0	0	0	0	0	3	49	52
Nimbostratus	0	0	0	0	0	0	2	0	21	23
Stratocumulus	0	2	0	0	0	0	5	13	8	30
Cumulus	0	0	0	0	0	0	1	1	0	2
Altostratus	0	0	0	0	0	1	0	3	1	5
Altocumulus	0	0	0	0	0	1	2	3	1	7
Cirrus	0	0	0	0	0	0	0	2	0	2
All	0	2	0	0	0	1	5	16	75	100

GA7.0 vs. CERES, where is the SW bias?

GA7.0 grid cells 40–70°S, 19 January 2007.

Conclusion

- Cloud cover is near 100% in the SO, with predominant low cloud (Sc, St).
- Cloud cover is underestimated in GA7.0 and MERRA-2 relative to ship observations by approximately 20% and 10%, respectively.
- There is close correspondence between lifting levels (min{SLL,LCL}) and cloud base height observed by ceilometer, suggesting role of boundary layer thermodynamics/stability.
- SLL does not appear to differ significantly between radiosonde observations and GA7.0 and MERRA-2.
- MERRA-2 simulates much more liquid content than GA7.0. GA7.0 simulates some ice content, but not enough to compensate.
- Synoptic scale structures and thermodynamics do not appear to be different enough between GA7.0 and MERRA-2 to explain the difference in cloud.

Acknowledgments

